中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

脊柱手术机器人在脊柱外科手术中的应用进展

Application progress of spinal surgical robot

作者:李玉希,黄浚燊 ,刘婷,黄家俊,黄 霖

Vol. 2 No. 2 Apr. 2021 DOI: 10.12180/j.issn.2096-7721.2021.02.009 发布日期:2022-08-06
关键词:脊柱手术机器人;外科机器人;智能骨科

作者简介:

    过去十年间,智能医疗技术已经成为研究的热点方向,并衍生出图像辅助 AI 和肿瘤诊断辅助系统等 一系列技术。在外科领域,外科机器人是最有吸引力的智能技术之一。经过近十年的发展,机器人在脊柱外科手术 中显露出巨大优势,已有大量关于准确性和辐射量的研究报道。但是,文献查阅过程中亦暴露出机器人的一些不足, 促使我们对脊柱机器人的综合评价进行了回顾。此综述总结了已发表文章中提到的结果和我们已总结而未发表的结 论,希望这些总结有助于研究人员将来对机器人进行针对性的改进,并拓宽脊柱手术机器人的未来方向。脊柱手术 机器人技术被认为在未来应用中前景光明,但是与其他现有的应用技术相比,亟须解决应用范围窄、应用深度浅和 优势不突出的缺点。

    In the past decade, intelligent medical technology has become a hot research direction, and a series of technologies such as image-assisted artificial intelligence (AI) and tumor diagnosis assistant systems have been derived. In the field of surgery, surgical robot is one of the most attractive intelligent technologies. After nearly ten years of development, surgical robots have shown tremendous advantages in spinal surgery and have been reported by a large number of studies on accuracy and radiation level. However, the literature review also exposed some shortcomings of robots, which prompted us to make a comprehensive evaluation on spine robot. This review summarized the results in published articles and unpublished conclusions, hoping to help researchers to improve the functions of spine robot and broaden its application in the future. Compared with other existing applied technologies, although robot-assisted spine surgical technology is considered of bright future, it has to extend and deepen its clinical application and strengthen its advantages urgently.

稿件信息

收稿日期:2020-03-14  录用日期:2020-07-12 

Received Date: 2020-03-14  Accepted Date: 2020-07-12 

基金项目:广东省自然科学基金(2017A030310554,2020A1515010371,2017A030313652) 

Foundation Item: Natural Science Foundation of Guangdong Province(2017A030310554, 2020A1515010371, 2017A030313652) 

通讯作者:黄霖,Email:huangl5@mail.sysu.edu.cn 

Corresponding Author: HUANG Lin, Email: huangl5@mail.sysu.edu.cn 

引用格式:李玉希,黄浚燊,刘婷,等 . 脊柱手术机器人在脊柱外科手术中的应用进展 [J]. 机器人外科学杂志,2021,2(2): 143-150. 

Citation: LI Y X, HUANG J S, LIU T,  et al. Application progress of spinal surgical robot [J]. Chinese Journal of Robotic Surgery, 2021, 2(2):143-150.

参考文献

[1] Korb W, Engel D, Boesecke R, et al. Risk analysis for a reliable and safe surgical robot system[J]. International Congress Series, 2003. DOI:10.1016/S0531- 5131(03)00402-3. 

[2] Korb W, Kornfeld M, Birkfellner W, et al. Risk analysis and safety assessment in surgical robotics: a case study on a biopsy robot[J]. Minim Invasive Ther Allied Technol, 2005, 14(1): 23-31. 

[3] Morandi A, Verga M, Oleari E, et al. A methodological framework for the definition of patient safety measures in robotic surgery: the experience of SAFROS project[M]. In: Frontiers of Intelligent Autonomous Systems. edn. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 381-390. 

[4] Lau D, Terman S W, Patel R, et al. Incidence of and risk factors for superior facet violation in minimally invasive versus open pedicle screw placement during transforaminal lumbar interbody fusion: a comparative analysis[J]. J Neurosurg Spine, 2013, 18(4): 356-361. 

[5] Aoude A A, Fortin M, Figueiredo R, et al. Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review[J]. Eur Spine J, 2015, 24(5): 990-1004. 

[6] Johnson N. Imaging, navigation, and robotics in spine surgery[J]. Spine (Phila Pa 1976), 2016, 41 (Suppl 7) : S32. 

[7] Solomiichuk V, Fleischhammer J, Molliqaj G, et al. Robotic versus fluoroscopy-guided pedicle screw insertion for metastatic spinal disease: a matched-cohort comparison[J]. Neurosurg Focus, 2017, 42(5): E13. 

[8] Faria C, Erlhagen W, Rito M, et al. Review of robotic technology for stereotactic neurosurgery[J]. IEEE Rev Biomed Eng, 2015.DOI:10.1109/RBME.2015.2428305.

[9] Hu X, Scharschmidt T J, Ohnmeiss D D, et al. Robotic assisted surgeries for the treatment of spine tumors[J]. Int J Spine Surg, 2015.DOI:10.14444/2001. 

[10] Overley S C, Cho S K, Mehta A I, et al. Navigation and robotics in spinal surgery: Where are we now? [J]. Neurosurgery, 2017, 80(3S): S86-S99. 

[11] Joseph J R, Smith B W, Liu X, et al. Current applications of robotics in spine surgery: a systematic review of the literature[J]. Neurosurg Focus, 2017, 42(5): E2. 

[12] Ringel F, Stüer C, Reinke A, et al. Accuracy of robotassisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation[J]. Spine (Phila Pa 1976), 2012, 37(8): E496-E501. 

[13] Schizas C, Thein E, Kwiatkowski B, et al. Pedicle screw insertion: robotic assistance versus conventional C-arm fluoroscopy[J]. Acta Orthop Belg, 2012, 78(2): 240-245. 

[14] Kim H J, Lee S H, Chang B S, et al. Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test[J]. Spine (Phila Pa 1976), 2015, 40(2): 87-94. [15] Kim H J, Jung W I, Chang B S, et al. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery[J]. Int J Med Robot, 2017, 13(3): 10. 

[16] Barzilay Y, Liebergall M, Fridlander A, et al. Miniature robotic guidance for spine surgery-introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres[J]. Int J Med Robot, 2006, 2(2): 146-153. 

[17] LIU H, CHEN W, WANG Z, et al. Comparison of the accuracy between robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis[J]. Int J Comput Assist Radiol Surg, 2016, 11(12): 2273-2281. 

[18] Schatlo B, Molliqaj G, Cuvinciuc V, et al. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison[J]. J Neurosurg Spine, 2014, 20(6): 636-643. 

[19] KUO K L, SU Y F, WU C H, et al. Assessing the intraoperative accuracy of pedicle screw placement by using a bone-mounted miniature robot system through secondary registration[J]. PloS One, 2016, 11(4): e0153235 

[20] Grelat M, Zairi F, Quidet M, et al. Assessment of the surgeon radiation exposure during a minimally invasive TLIF: Comparison between fluoroscopy and O-arm system[J]. Neurochirurgie, 2015, 61(4): 255-259. 

[21] Yu E, Khan S N. Does less invasive spine surgery result in increased radiation exposure? A systematic review[J]. Clin Orthop Relat Res, 2014, 472(6): 1738-1748. 

[22] Roser F, Tatagiba M, Maier G. Spinal robotics: current applications and future perspectives[J]. Neurosurgery, 2013, 72 (Suppl 1): 12-18. [23] Kim H J, Kang K T, Park S C, et al. Biomechanical advantages of robot-assisted pedicle screw fixation in posterior lumbar interbody fusion compared with freehand technique in a prospective randomized controlled trial-perspective for patient-specific finite element analysis[J]. Spine J, 2017, 17(5): 671-680. 

[24] Lieber A M, Kirchner G J, Kerbel Y E, et al. Roboticassisted pedicle screw placement fails to reduce overall postoperative complications in fusion surgery[J]. Spine J, 2019, 19(2): 212-217.

[25] Jeong I G, Khandwala Y S, Kim J H, et al. Association of robotic-assisted vs laparoscopic radical nephrectomy with perioperative outcomes and health care costs, 2003 to 2015[J]. JAMA, 2017, 318(16): 1561-1568.

[26] Ha Y. Robot-assisted spine surgery: A solution for aging spine surgeons[J]. Neurospine, 2018, 15(3): 187-188.

[27] Laudato P A, Pierzchala K, Schizas C. Pedicle screw insertion accuracy using O-arm, robotic guidance, or freehand technique: A comparative study[J]. Spine (Phila Pa 1976), 2018, 43(6): E373-E378.

[28] FAN Y, DU J, ZHANG J, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery[J]. Med Sci Monit, 2017.DOI: 10.12659/msm.905713.

[29] LIU Y. Potential risk of intelligent technologies in clinical orthopedics[J]. Adv Exp Med Biol, 2018.DOI: 10.1007/978-981-13-1396-7_21. [30] Devito D P, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study[J]. Spine (Phila Pa 1976), 2010, 35(24): 2109-2115. [31] Tsai T H, Tzou R D, Su Y F, et al. Pedicle screw placement accuracy of bone-mounted miniature robot system[J]. Medicine (Baltimore), 2017, 96(3): e5835

[32] Herron D M, Marohn M, Group S-MRSC. A consensus document on robotic surgery[J]. Surg Endosc, 2008, 22(2): 313-312.

[33] Nathoo N, Cavuşoğlu M C, Vogelbaum M A, et al. In touch with robotics: neurosurgery for the future[J]. Neurosurgery, 2005, 56(3): 421-433.

[34] TIAN W, WANG H, LIU Y J. Robot-assisted anterior odontoid screw fixation: A case report[J]. Orthopaedic Surgery, 2016, 8(3): 400-404.

[35] Maier-Hein L, Vedula S S, Speidel S, et al. Surgical data science for next-generation interventions[J]. Nature Biomedical Engineering, 2017, 1(9): 691-696.

印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈