目的:评估机器人心脏外科手术的安全性和有效性。方法:选取 2016 年 1 月 ~2020 年 1 月在本院行达芬奇系统进行机器人心脏外科手术的 180 例患者为研究对象,分析其围手术期超声心动图结果、手术时间和体外循环时间等临床关键参数,拟合 CUSUM 曲线和 Kaplan-Meier 生存曲线,评估机器人心脏外科手术的安全性及有效性。结果:达芬奇机器人心外手术体外循环主动脉阻断手术平均手术时间(5.3±1.2)h,体外循环时间(160.9±56.1)min,主动脉阻断时间(104.8±54.7)min。体外循环非停跳手术平均手术时间(4.5±0.9)h,体外循环时间(104.8±54.7)min。非体外循环不停跳搭桥手术平均手术时间(4.6±0.9)h,乳内动脉制备时间(61.3±23.3)min。围手术期死亡 3例,死亡率 1.67%。随访总时间为 5 389 个月,无术后死亡病例。二尖瓣成形例数 99 例,有 2 例一年以上随访患者出现中度以上反流,二尖瓣成形无临床终止事件成功率 96.2%。根据主动脉阻断时间和体外循环(Cardiopulmonarybypass,CPB)时间 CUSUM 曲线,平均手术 25 例后可以跨越学习曲线。结论:机器人心脏外科体外循环手术是安全和有效的。研究结果表明,随着经验的增加,克服学习曲线后,手术时间和体外循环时间可以缩短;且机器人手术在某些需要精细操作的手术中有较大的优势。
Objective: To evaluate the safety and effectiveness of robotic cardiac surgery. Methods: A total of 180 patients who underwent Da Vinci robotic cardiac surgery from January 2016 to January 2020 were selected. The results of perioperative echocardiography, operation time, extracorporeal circulation time and other clinical key parameters were analyzed, the CUSUM curve and Kaplan-Meier survival curve were fitted to evaluate the safety and effectiveness. Results: The average operation time of robotic cardiac surgery was 5.3±1.2 h, cardiopulmonary bypass time was 160.9±56.1 min and aortic occlusion time was 104.8±54.7 min. The average operation time of non-stop operation with cardiopulmonary bypass was 4.5±0.9 h and the time of cardiopulmonary bypass was 104.8±54.7 min. The average operation time of off-pump bypass grafting was 4.6±0.9, and the internal mammary artery preparation time was 61.3±23.3 min. Three cases died during the perioperative period with a mortality rate of 1.67%. The total follow-up time was 5 389 months and no postoperative death was found. There were 99 cases of mitral valve repair, of which two patients with more than one year follow-up had moderate or above regurgitation. The success rate of mitral valve repair without clinical termination event was 96.2%. According to the CUSUM curve of aortic block time and CPB time, the learning curve can be crossed after an average of 25 cases of robotic surgery. Conclusion: Robotic cardiac surgery is safe and effective. The operation time and cardiopulmonary bypass time can be shortened that with the increase of experience after overcoming the learning curve. Robotic surgery has greater advantage in some delicate surgeries.
收稿日期:2020-09-09 录用日期:2021-04-21
Received Date: 2020-09-09 Accepted Date: 2021-04-21
基金项目:国家自然科学基金(81870263)
Foundation Item: National Natural Science Foundation of China (81870263)
通讯作者:尤斌,Email: dr_youbin@sina.vip.com
Corresponding Author: YOU Bin, Email: dr_youbin@sina.vip.com
引用格式:许李力,李平,徐屹,等 . 机器人心脏外科手术早期随访的安全性及有效性研究 [J]. 机器人外科学杂志(中英文),2021,2(6):421-430.
Citation: XU L L, LI P, XU Y, et al. Safety and effectiveness of robotic cardiac surgery in early follow-up [J]. Chinese Journal of Robotic Surgery, 2021, 2 (6): 421-430.
[1] Mohr F W, Onnasch J F, Falk V, et al. The evolution of minimally invasive valve surgery-2 year experience[J]. Eur J Cardiothorac Surg, 1999, 15(3): 233-238.
[2] Falk V, Cheng D C, Martin J, et al. Minimally invasive versus open mitral valve surgery: a consensus statement of the international society of minimally invasive coronary surgery (ISMICS) 2010[J]. Innovations (Phila), 2011. DOI: 10.1097/IMI.0b013e318216be5c.
[3] Rodriguez E, Nifong L W, Chu M W, et al. Robotic mitral valve repair for anterior leaflet and bileaflet prolapse[J]. Ann Thorac Surg, 2008, 85(2): 438-444.
[4] Chitwood W R Jr, Rodriguez E, Chu M W, et al. Robotic mitral valve repairs in 300 patients: a single-center experience[J]. J Thorac Cardiovasc Surg, 2008, 136(2): 436-441.
[5] Murphy D A, Miller J S, Langford D A, et al. Endoscopic robotic mitral valve surgery[J]. J Thorac Cardiovasc Surg, 2006, 132(4): 776-781.
[6] Seco M, Cao C, Modi P, et al. Systematic review of robotic minimally invasive mitral valve surgery[J]. Ann Cardiothorac Surg, 2013, 2(6): 704-716.
[7] Nifong L W, Chu V F, Bailey B M, et al. Robotic mitral valve repair: experience with the Da Vinci system[J]. Ann Thorac Surg, 2003, 75(2): 438-443.
[8] Cheng W, Fontana G P, De Robertis M A, et al. Is robotic mitral valve repair a reproducible approach? [J]. J Thorac Cardiovasc Surg, 2010, 139(3): 628-633.
[9] Lee J W, Choo S J, Kim K I, et al. Atrial fibrillation surgery simplified with cryoablation to improve left atrial function[J]. Ann Thorac Surg, 2001, 72(5): 1479- 1483.
[10] Lancellotti P, Moura L, Pierard L A, et al. European association of echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease)[J]. Eur J Echocardiogr, 2010, 11(4): 307-332.
[11] Iribarne A, Russo M J, Easterwood R, et al. Minimally invasive versus sternotomy approach for mitral valve surgery: a propensity analysis[J]. Ann Thorac Surg, 2010, 90(5): 1471-1477.
[12] Holzhey D M, Shi W, Borger M A, et al. Minimally invasive versus sternotomy approach for mitral valve surgery in patients greater than 70 years old: a propensity-matched comparison[J]. Ann Thorac Surg, 2011, 91(2): 401-405.
[13] Mihaljevic T, Jarrett C M, Gillinov A M, et al. Robotic repair of posterior mitral valve prolapse versus conventional approaches: potential realized[J]. J Thorac Cardiovasc Surg, 2011. DOI: 10.1016/ j.jtcvs.2010.09.008.
[14] Robicsek F. Robotic cardiac surgery: quo vadis?[J]. J Thorac Cardiovasc Surg, 2003. DOI: 10.1016/s0022- 5223(02)73572-1.
[15] Diodato M D Jr, Damiano R J Jr. Robotic cardiac surgery: overview[J]. Surg Clin North Am, 2003. DOI: 10.1016/S0039-6109(03)00166-X.
[16] Gammie J S, Zhao Y, Peterson E D, et al. Less-invasive mitral valve operations: trends and outcomes from the Society of Thoracic Surgeons Adult Cardiac Surgery Database[J]. Ann Thorac Surg, 2010, 90(5): 1401-1408.
[17] Mariscalco G, Musumeci F. The minithoracotomy approach: a safe and effective alternative for heart valve surgery[J]. Ann Thorac Surg, 2014, 97(1): 356-364.
[18] Suri R M, Burkhart H M, Daly R C, et al. Robotic mitral valve repair for all prolapse subsets using techniques identical to open valvuloplasty: establishing the benchmark against which percutaneous interventions should be judged[J]. J Thorac Cardiovasc Surg, 2011, 142(5): 970-979.
[19] Modi P, Hassan A, Chitwood W R Jr. Minimally invasive mitral valve surgery: a systematic review and meta-analysis[J]. Eur J Cardiothorac Surg, 2008. DOI: 10.1016/j.ejcts.2008.07.057.
[20] Yoo J S, Kim J B, Jung S H, et al. Echocardiographic assessment of mitral durability in the late period following mitral valve repair: minithoracotomy versus conventional sternotomy[J]. J Thorac Cardiovasc Surg, 2014. DOI: 10.1016/j.jtcvs.2013.05.042.
[21] David T E, Ivanov J, Armstrong S, et al. A comparison of outcomes of mitral valve repair for degenerative disease with posterior, anterior, and bileaflet prolapse[J]. J Thorac Cardiovasc Surg, 2005, 130(5): 1242-1249.
[22] Braunberger E, Deloche A, Berrebi A, et al. Very longterm results (more than 20 years) of valve repair with carpentier’s techniques in nonrheumatic mitral valve insufficiency[J]. Circulation, 2001. DOI: 10.1161/01. CIR.104.suppl_1.I-8.
[23] Mohty D, Orszulak TA, Schaff H V, et al. Very long-term survival and durability of mitral valve repair for mitral valve prolapse[J]. Circulation, 2001. DOI: 10.1161/ hc37t1.094903.
[24] Nifong L W, Rodriguez E, Chitwood W R Jr. 540 consecutive robotic mitral valve repairs including concomitant atrial fibrillation cryoablation[J]. Ann Thorac Surg, 2012, 94(1): 38-43.
[25] Charland P J, Robbins T, Rodriguez E, et al. Learning curve analysis of mitral valve repair using telemanipulative technology[J]. J Thorac Cardiovasc Surg, 2011, 142(2): 404-410.
[26] Glauber M, Karimov JH. A completely detachable aortic clamping instrument for minimally invasive cardiac surgery[J]. Innovations (Phila), 2010, 5(4): 309-310.