随着外科手术微创化的发展,达芬奇机器人手术系统已被应用于多种心脏外科手术。该系统融合了人工智能的研究成果,具有 3D 高清术野、动作缩放、机械臂灵活、震颤过滤、操作稳定、创伤小等优点,且能缓解医护人员疲劳。外科手术机器人为心脏外科手术的快速化、精准化、微创化提供了新的思路和途径,代表了微创心脏外科的发展方向。但达芬奇机器人手术系统作为通用型腔镜手术机器人,在心外科的应用也面临系统复杂、操作时间长、缺乏触觉反馈、总体费用昂贵等不足和挑战。本文主要阐述了达芬奇机器人手术系统在心脏外科领域应用的优势、安全性、有效性及在推广、应用过程中存在的问题,并对其未来的发展前景进行了展望,期望可以为机器人手术系统在心脏外科的应用提供帮助。
With the development of minimally invasive surgery, Da Vinci surgical system has been applied to a variety of cardiac surgeries. By integrating the latest AI technology, it has the advantages of 3D high-definition field, motion scaling, flexible manipulator, tremor filtering, stable operation, less trauma and so on. Surgical robot not only provides new ideas and ways of speed, precision and minimally invasive surgery for cardiac surgery, but also represents the development direction of minimally invasive cardiac surgery. However, as a universal endoscopic surgical robot, Da Vinci surgical system also faces shortcomings and challenges in cardiac surgery, such as complicated system, prolonged time of operation, lacking of tactile feedback, high cost and so on. This paper mainly expounds the advantages, safety and effectiveness of the application of Da Vinci surgical system in the field of cardiac surgery, and the difficulties in its popularization and application were also analyzed. The development of robot-assisted surgical system in cardiac surgery in the future is also prospected. It is expected that this paper can provide help for the application and promotion of robotic surgery system in cardiac surgery.
收稿日期:2021-04-29 录用日期:2021-06-04
Received Date: 2021-04-29 Accepted Date: 2021-06-04
基金项目:安徽省高校自然科学基金(KJ2019A0246)
Foundation Item: Natural Science Foundation of Anhui Universities (KJ2019A0246)
通讯作者:张成鑫,Email:zhangchengxin@ahmu.edu.cn;王嵘,Email:wangrongd@126.com
Corresponding Author: ZHANG Chengxin, Email: zhangchengxin@ahmu.edu.cn; WANG Rong, Email: wangrongd@126.com
引用格式:张帅朋,张成鑫,王嵘 . 机器人手术系统在心脏外科手术中的应用 [J]. 机器人外科学杂志(中英文),2021,2(6):439-450.
Citation: ZHANG S P, ZHANG C X, WANG R. Application of robotic surgery system in cardiac surgery [J]. Chinese Journal of Robotic Surgery, 2021, 2 (6): 439-450.
[1] 朱成章 , 张维胜 , 杜斌斌 , 等 . 达芬奇手术系统荧光成像技术在结直肠外科手术中的应用进展 [J]. 机器人外科学杂志 ( 中英文 ), 2020, 1(5): 332-337.
[2] Loulmet D, Carpentier A, D’attellis N, et al. Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments[J]. The Journal of Thoracic and Cardiovascular Surgery, 1999, 118(1): 4-10.
[3] Whellan D J, Mccarey M M, Taylor B S, et al. Trends in robotic-assisted coronary artery bypass grafts: a study of the Society of Thoracic Surgeons Adult Cardiac Surgery Database, 2006 to 2012[J]. The Annals of thoracic surgery, 2016, 102(1): 140-146.
[4] WANG S, ZHOU J, CAI J F. Traditional coronary artery bypass graft versus totally endoscopic coronary artery bypass graft or robot-assisted coronary artery bypass graft-meta-analysis of 16 studies[J]. European Review for Medical & Pharmacological Sciences, 2014, 18(6): 790-797.
[5] SU C, SHEN C, CHANG K, et al. Clinical outcomes of patients with multivessel coronary artery disease treated with robot-assisted coronary artery bypass graft surgery versus one-stage percutaneous coronary intervention using drug-eluting stents[J]. Medicine, 2019, 98(38):e17202.
[6] Bonatti J, Wallner S, Crailsheim I, et al. Minimally invasive and robotic coronary artery bypass grafting-a 25-year review[J]. Journal of Thoracic Disease, 2021, 13(3): 1922-1944.
[7] Endo Y, Nakamura Y, Kuroda M, et al. The utility of a 3D endoscope and robot-assisted system for MIDCAB[J]. Annals of thoracic and cardiovascular surgery: official journal of the Association of Thoracic and Cardiovascular Surgeons of Asia, 2019, 25(4): 200-204.
[8] Derose J, Balaram S, Ro C, et al. Mid-term results and patient perceptions of robotically-assisted coronary artery bypass grafting[J]. Interactive cardiovascular and thoracic surgery, 2005, 4(5): 406-411.
[9] Halkos M, Liberman H, Devireddy C, et al. Early clinical and angiographic outcomes after roboticassisted coronary artery bypass surgery[J]. The Journal of thoracic and cardiovascular surgery, 2014, 147(1): 179-185.
[10] Giambruno V, Chu M, Fox S, et al. Robotic-assisted coronary artery bypass surgery: an 18-year singlecentre experience[J]. The international journal of medical robotics + computer assisted surgery : MRCAS, 2018, 14(3): e1891.
[11] Argenziano M, Katz M, Bonatti J, et al. Results of the prospective multicenter trial of robotically assisted totally endoscopic coronary artery bypass grafting[J]. The Annals of thoracic surgery, 2006, 81(5): 1666-74; discussion 1674-1675.
[12] Bonaros N, Schachner T, Lehr E, et al. Five hundred cases of robotic totally endoscopic coronary artery bypass grafting: predictors of success and safety[J]. The Annals of thoracic surgery, 2013, 95(3): 803-812.
[13] Jegaden O, Wautot F, Sassard T, et al. Is there an optimal minimally invasive technique for left anterior descending coronary artery bypass?[J]. Journal of cardiothoracic surgery, 2011, 6(1): 37.
[14] Balkhy H H, Nisivaco S, Kitahara H, et al. Robotic Multivessel Endoscopic Coronary Bypass: Impact of a Beating-Heart Approach With Connectors[J]. The Annals of thoracic surgery, 2019, 108(1): 67-73.
[15] Bonatti J, Schachner T, Bonaros N, et al. Effectiveness and safety of total endoscopic left internal mammary artery bypass graft to the left anterior descending artery[J]. The American Journal of cardiology, 2009, 104(12): 1684-1688.
[16] Mishra Y, Wasir H, Rajneesh M, et al. Robotically enhanced coronary artery bypass surgery[J]. Journal of robotic surgery, 2007, 1(3): 221-226.
[17] Balkhy H, Wann L, Krienbring D, et al. Integrating coronary anastomotic connectors and robotics toward a totally endoscopic beating heart approach: review of 120 cases[J]. The Annals of thoracic surgery, 2011, 92(3): 821-827.
[18] Kitahara H, Nisivaco S, Balkhy H. Graft Patency after Robotically Assisted Coronary Artery Bypass Surgery[J]. Innovations (Philadelphia, Pa.), 2019, 14(2): 117-123.
[19] Bonatti J, Wehman B, de Biasi A, et al. Totally endoscopic quadruple coronary artery bypass grafting is feasible using robotic technology[J]. The Annals of thoracic surgery, 2012, 93(5): e111-e112.
[20] Bonatti J, Lee J, Bonaros N, et al. Robotic totally endoscopic multivessel coronary artery bypass grafting: procedure development, challenges, results[J]. Innovations (Philadelphia, Pa.), 2012, 7(1): 3-8.
[21] de Cannière D, Wimmer-Greinecker G, Cichon R, et al. Feasibility, safety, and efficacy of totally endoscopic coronary artery bypass grafting: multicenter European experience[J]. The Journal of thoracic and cardiovascular surgery, 2007, 134(3): 710-716.
[22] Srivastava S, Barrera R, Quismundo S. One hundred sixty-four consecutive beating heart totally endoscopic coronary artery bypass cases without intraoperative conversion[J]. The Annals of thoracic surgery, 2012, 94(5): 1463-1468.
[23] Wiedemann D, Bonaros N, Schachner T, et al. Surgical problems and complex procedures: issues for operative time in robotic totally endoscopic coronary artery bypass grafting[J]. The Journal of thoracic and cardiovascular surgery, 2012, 143(3): 639-647.e2.
[24] Schachner T, Bonaros N, Wiedemann D, et al. Predictors, causes, and consequences of conversions in robotically enhanced totally endoscopic coronary artery bypass graft surgery[J]. The Annals of thoracic surgery, 2011, 91(3): 647-653.
[25] Kiaii B, McClure R, Kostuk W, et al. Concurrent robotic hybrid revascularization using an enhanced operative suite[J]. Chest, 2005, 128(6): 4046-4048.
[26] Cavallaro P, Rhee A, Chiang Y, et al. In-hospital mortality and morbidity after robotic coronary artery surgery[J]. Journal of cardiothoracic and vascular anesthesia, 2015, 29(1): 27-31.
[27] Oehlinger A, Bonaros N, Schachner T, et al. Robotic endoscopic left internal mammary artery harvesting: what have we learned after 100 cases?[J]. The Annals of thoracic surgery, 2007, 83(3): 1030-1034.
[28] CHENG N, GAO C, YANG M, et al. Analysis of the learning curve for beating heart, totally endoscopic, coronary artery bypass grafting[J]. The Journal of thoracic and cardiovascular surgery, 2014, 148(5): 1832-1836.
[29] Göbölös L, Ramahi J, Obeso A, et al. Robotic totally endoscopic coronary artery bypass grafting: systematic review of clinical outcomes from the past two decades[J]. Innovations (Philadelphia, Pa.), 2019, 14(1): 5-16.
[30] Bonatti J, Wallner S, Winkler B, et al. Robotic totally endoscopic coronary artery bypass grafting: current status and future prospects[J]. Expert review of medical
devices, 2020, 17(1): 33-40.
[31] Carpentier A, Loulmet D, Aupècle B, et al. Computer assisted open heart surgery. First case operated on with success[J]. Comptes rendus de l’Academie des sciences. Serie III, Sciences de la vie, 1998, 321(5): 437-442.
[32] Falk V, Autschbach R, Krakor R, et al. Computerenhanced mitral valve surgery: toward a totalendoscopic procedure[J]. Seminars in thoracic and cardiovascular surgery, 1999, 11(3): 244-249.
[33] Murphy D, Miller J, Langford D. Endoscopic robotic mitral valve surgery[J]. The Journal of thoracic and cardiovascular surgery, 2007, 133(4): 1119-1120.
[34] Nifong L, Rodriguez E, Chitwood W. 540 consecutive robotic mitral valve repairs including concomitant atrial fibrillation cryoablation[J]. The Annals of thoracic surgery, 2012, 94(1): 38-42; discussion 43.
[35] Chitwood W, Rodriguez E, Chu M, et al. Robotic mitral valve repairs in 300 patients: a singlecenter experience[J]. The Journal of thoracic and cardiovascular surgery, 2008, 136(2): 436-441.
[36] Suri R, Burkhart H, Daly R, et al. Robotic mitral valve repair for all prolapse subsets using techniques identical to open valvuloplasty: establishing the benchmark against which percutaneous interventions should be judged[J]. The Journal of thoracic and cardiovascular surgery, 2011, 142(5): 970-979.
[37] Mihaljevic T, Pattakos G, Gillinov A, et al. Robotic posterior mitral leaflet repair: neochordal versus resectional techniques[J]. The Annals of thoracic surgery, 2013, 95(3): 787-794.
[38] Mihaljevic T, Jarrett C, Gillinov A, et al. Robotic repair of posterior mitral valve prolapse versus conventional approaches: potential realized[J]. The Journal of thoracic and cardiovascular surgery, 2011, 141(1): 72-80.e1-4.
[39] Cao C, Wolfenden H, Liou K, et al. A meta-analysis of robotic vs. conventional mitral valve surgery[J]. Annals of cardiothoracic surgery, 2015, 4(4): 305-314.
[40] Gillinov A, Mihaljevic T, Javadikasgari H, et al. Early results of robotically assisted mitral valve surgery: analysis of the first 1000 cases[J]. The Journal of thoracic and cardiovascular surgery, 2018, 155(1): 82-91.e2.
[41] Maltais S, Anwer L, Daly R, et al. Robotic Mitral Valve Repair: Indication for Surgery Does Not Influence Early Outcomes[J]. Mayo Clinic proceedings, 2019, 94(11): 2263-2269.
[42] Loulmet D, Koeckert M, Neuburger P, et al. Robotic mitral repair for Barlow’s disease with bileaflet prolapse and annular calcification using pericardial patch technique[J]. Annals of cardiothoracic surgery, 2017, 6(1): 67-69.
[43] Loulmet D, Ranganath N, Neragi-Miandoab S, et al. Advanced experience allows robotic mitral valve repair in the presence of extensive mitral annular calcification[J]. The Journal of thoracic and cardiovascular surgery, 2019. DOI: 10.1016/ j.jtcvs.2019.10.099.[44] Torracca L, Ismeno G, Alfieri O. Totally endoscopic computer-enhanced atrial septal defect closure in six patients[J]. The Annals of thoracic surgery, 2001, 72(4): 1354-1357.
[45] Argenziano M, Oz M, DeRose J, et al. Totally endoscopic atrial septal defect repair with robotic assistance[J]. The heart surgery forum, 2002, 5(3): 294-300.
[46] Morgan J, Peacock J, Kohmoto T, et al. Robotic techniques improve quality of life in patients undergoing atrial septal defect repair[J]. The Annals of thoracic surgery, 2004, 77(4): 1328-1333.
[47] Sepúlveda E, Ibáñez A, Baeza C, et al. Robotic mitral valve repair and closure of atrial septal defect. Report of 13 procedures[J]. Revista medica de Chile, 2019, 147(10): 1303-1307.
[48] Onan B, Onan I. Early results of robotically assisted congenital cardiac surgery: analysis of 242 patients[J]. The Annals of thoracic surgery, 2020. DOI: 10.1016/ j.athoracsur.2020.10.028.
[49] 杨明 , 高长青 , 肖苍松 , 等 . 全机器人心脏不停跳下房间隔缺损修补术 [J]. 中华胸心血管外科杂志 ,2011, 26(7): 395-397.
[50] Owers C, Vaughan P, Braidley P, et al. Atrial myxomas: a single unit’s experience in the modern era[J]. The heart surgery forum, 2011, 14(2): E105-109.
[51] Murphy D, Miller J, Langford D. Robot-assisted endoscopic excision of left atrial myxomas[J]. The Journal of thoracic and cardiovascular surgery, 2005, 130(2): 596-597.
[52] Moss E, Halkos M, Miller J, et al. Comparison of endoscopic robotic versus sternotomy approach for the resection of left atrial tumors[J]. Innovations (Philadelphia, Pa.), 2016, 11(4): 274-277.
[53] YANG M, YAO M, WANG G, et al. Comparison of postoperative quality of life for patients who undergo atrial myxoma excision with robotically assisted versus conventional surgery[J]. The Journal of thoracic and cardiovascular surgery, 2015, 150(1): 152-157.
[54] Schilling J, Engel A, Hassan M, et al. Robotic excision of atrial myxoma[J]. Journal of cardiac surgery, 2012, 27(4): 423-426.
[55] GAO C, YANG M, WANG G, et al. Excision of atrial myxoma using robotic technology[J]. The Journal of thoracic and cardiovascular surgery, 2010, 139(5): 1282-1285.
[56] Khalpey Z, Korovin L, Chitwood W, et al. Robot-assisted septal myectomy for hypertrophic cardiomyopathy with left ventricular outflow tract obstruction[J]. The Journal of thoracic and cardiovascular surgery, 2014, 147(5): 1708-1709.
[57] Chitwood W. Robotic trans-atrial and trans-mitral ventricular septal resection[J]. Annals of cardiothoracic surgery, 2017, 6(1): 54-59.
[58] Kumar C J A, Marc Gillinov A, Smedira N, et al. Robotic trans-mitral septal myectomy and papillary muscle reorientation for HOCM combined with or without mitral valve repair: Technical aspects-How we do it[J]. Journal of cardiac surgery, 2020, 35(11): 3120-3124.
[59] Folliguet T, Vanhuyse F, Magnano D, et al. Robotic aortic valve replacement: case report[J]. The heart surgery forum, 2004, 7(6): E551-553.
[60] Folliguet T, Vanhuyse F, Konstantinos Z, et al. Early experience with robotic aortic valve replacement[J]. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, 2005, 28(1): 172-173.
[61] Balkhy H, Lewis C, Kitahara H. Robot-assisted aortic valve surgery: state of the art and challenges for the future[J]. The international journal of medical robotics + computer assisted surgery : MRCAS, 2018, 14(4): e1913.
[62] Murphy E. Robotic excision of aortic valve papillary fibroelastoma and concomitant maze procedure[J]. Global cardiology science & practice, 2012, 2012(2): 93-100.
[63] Woo Y, Grand T, Weiss S. Robotic resection of an aortic valve papillary fibroelastoma[J]. The Annals of thoracic surgery, 2005, 80(3): 1100-1102.
[64] Ju M, Huh J, Lee C, et al. Robotic-assisted surgical ablation of atrial fibrillation combined with mitral valve surgery[J]. The Annals of thoracic surgery, 2019, 107(3): 762-768.
[65] Rillig A, Schmidt B, Di Biase L, et al. Manual versus robotic catheter ablation for the treatment of atrial fibrillation: the man and machine trial[J]. JACC. Clinical electrophysiology, 2017, 3(8): 875-883.
[66] Derose J, Belsley S, Swistel D, et al. Robotically assisted left ventricular epicardial lead implantation for biventricular pacing: the posterior approach[J]. The Annals of thoracic surgery, 2004, 77(4): 1472-1474.
[67] Mair H, Jansens J, Lattouf O, et al. Epicardial lead implantation techniques for biventricular pacing via left lateral mini-thoracotomy, video-assisted thoracoscopy, and robotic approach[J]. The heart surgery forum, 2003, 6(5): 412-417.
[68] Murphy D, Moss E, Miller J, et al. Repeat robotic endoscopic mitral valve operation: a safe and effective strategy[J]. The Annals of thoracic surgery, 2018, 105(6): 1704-1709.
[69] Cheng W, Fontana G, De Robertis M, et al. Is robotic mitral valve repair a reproducible approach?[J]. The Journal of thoracic and cardiovascular surgery, 2010, 139(3): 628-633.
[70] Suematsu Y, Mora B, Mihaljevic T, et al. Totally endoscopic robotic-assisted repair of patent ductus arteriosus and vascular ring in children[J]. The Annals of thoracic surgery, 2005, 80(6): 2309-2313.
[71] Alima M, Vanden Eynden F, Preumont N, et al. Robotic-assisted surgical myotomy in a 27-year
old man with myocardial bridging of the left anterior descending coronary artery[J]. Interactive cardiovascular and thoracic surgery, 2010, 11(2): 185-187.