中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

计算机辅助技术在骨科手术中的应用进展

Advances of computer-assisted technology in orthopedic surgery

作者:翟志凯,张国梁

Vol. 2 No. 6 Dec. 2021 DOI: 10.12180/j.issn.2096-7721.2021.06.010 发布日期:2022-08-06
关键词:机器人;骨科手术;人工智能;计算机导航

作者简介:

随着近十年来人工智能技术的飞速发展,计算机辅助骨科手术(Computer assisted orthopedic surgery,CAOS)在临床手术中的应用已经较为成熟,但是相对于发达国家,其在国内的发展还处于初级阶段;CAOS 最早应用于脊柱手术中,现已经逐步完善了在关节、创伤、运动医学及骨肿瘤等方面的应用。CAOS 在骨科手术中的应用具有手术时间短、辐射量少、定位准确等优势,目前已经是骨科发展的重要方向。推动 CAOS 和自主研发的骨科手术机器人的发展,优化计算机导航技术将是骨科技术程序化、智能化和个体化的关键所在。本文针对 CAOS 的发展进程及未来的应用前景做一综述。

With the rapid development of artificial intelligence technology in the past decade, the application of computer-assisted orthopedic surgery (CAOS) in clinical practice has become more and more mature. However, compared with developed countries, CAOS in China is still in its primary stage. Despite CAOS was used in spinal surgery firstly, it now has been gradually applied to joint, trauma, sports medicine, and bone tumor. CAOS has the advantages such as shorter operation time, less radiation, more accurate positioning and so on. To promote the development of CAOS and self-developed orthopedic  robot, and optimize the computer navigation technology are keys to the programing, intellectualization and individualization of orthopedic technology. In this paper, the application status and prospects of CAOS are reviewed.

稿件信息

收稿日期:2021-03-02  录用日期:2021-04-08

Received Date: 2021-03-02  Accepted Date: 2021-04-08

基金项目:内蒙古自治区自然科学基金新项目资助(2021MS08080)

Foundation Item: New Projects of Natural Science Foundation of Inner Mongolia Autonomous Region(2021MS08080)

通讯作者:张国梁,Email:13848106597@163.com

Corresponding Author: ZHANG Guoliang, Email: 13848106597@163.com

引用格式:翟志凯,张国梁 . 计算机辅助技术在骨科手术中的应用进展 [J]. 机器人外科学杂志(中英文),2021,2(6):485-491.

Citation: ZHAI Z K, ZHANG G L. Advances of computer-assisted technology in orthopedic surgery [J]. Chinese Journal of Robotic Surgery, 2021, 2(6): 485-491.

参考文献

[1] Lavallée S, Sautot P, Troccaz J, et al. Computer-assisted spine surgery: a technique for accurate transpedicular screw fixation using CT data and a 3-D optical localizer[J]. J Image Guid Surg, 1995, 1(1): 65-73.

[2] Nolte L P, Visarius H, Arm E, et al. Computer-aided fixation of spinal implants[J]. J Image Guid Surg, 1995, 1(2): 88-93.

[3] Joskowicz L, Milgrom C, Simkin A, et al. FRACAS: a system for computer-aided image-guided long bone fracture surgery[J]. Comput Aided Surg, 1998, 3(6): 271-288.

[4] Russell T, Patrick J, Louis W, et al. A steady-hand robotic system for microsurgical augmentation[J]. Lecture Notes in Computer Science, 1999, 1679(1): 1031-1041.

[5] Luo X, Mori K, Peters T M. Advanced endoscopic navigation: surgical big data, Methodology and Applications[J]. Annu Rev Biomed Eng, 2018. DOI: 10.1146/annurev-bioeng-062117-120917

[6] Ewurum C H, Guo Y, Pagnha S, et al. Surgical navigation in orthopedics: workflow and system review[J].Adv Exp Med Biol, 2018, 1093: 47-63. DOI: 10.1007/978-981-13-1396-7_4.

[7] de Siebenthal J, Grützner P A, Zimolong A, et al. Assessment of video tracking usability for training simulators[J]. Comput Aided Surg, 2004, 9(3): 59-69.

[8] Clarke J V, Deakin A H, Nicol A C, et al. Measuring the positional accuracy of computer assisted surgical tracking systems[J]. Comput Aided Surg, 2010, 15(1-3): 13-18.

[9] Song S J, Park C H, Bae D K. What to know for selecting cruciate-retaining or posterior-stabilized total knee arthroplasty[J]. Clinics in Orthopedic Surgery, 2019, 11(2):142.

[10] Jaramaz B, DiGioia A M 3rd, Blackwell M, et al. Computer assisted measurement of cup placement in total hip replacement[J]. Clin Orthop Relat Res, 1998. DOI: 10.1097/00003086-199809000-00010.

[11] DiGioia A M, Jaramaz B, Blackwell M, et al. The Otto Aufranc Award. Image guided navigation system to measure intraoperatively acetabular implant alignment[J]. Clin Orthop Relat Res, 1998. DOI: 10.1097/00003086-199810000-00003.

[12] Ulivi M, Orlandini L C, Meroni V, et al. Intraoperative validation of bone cut accuracy of a pinless smart touch-screen navigation system device in total knee arthroplasty[J]. Int J Med Robot, 2019, 15(5): e2030.

[13] Jolles B M, Genoud P, Hoffmeyer P. Computer-assisted cup placement techniques in total hip arthroplasty improve accuracy of placement[J]. Clin Orthop Relat Res, 2004. DOI:10.1097/01.blo.0000141903.08075.83

[14] Sugano N, Takao M, Sakai T, et al. Does CT-based navigation improve the long-term survival in ceramicon-ceramic THA?[J]. Clin Orthop Relat Res, 2012, 470(11): 3054-3059.

[15] Nashikkar P S, Scholes C J, Haber M D. Role of intraoperative navigation in the fixation of the glenoid component in reverse total shoulder arthroplasty: a clinical case-control study[J]. J Shoulder Elbow Surg, 2019, 28(9): 1685-1691.

[16] YAO J, DONG B, SUN J, et al. Accuracy and reliability of computer-aided anatomical measurements for vertebral body and disc based on computed tomography scans[J]. Orthop Surg, 2020, 12(4): 1182-1189.

[17] Kraus M, Weiskopf J, Dreyhaupt J, et al. Computeraided surgery does not increase the accuracy of dorsal pedicle screw placement in the thoracic and lumbar spine: a retrospective analysis of 2, 003 pedicle screws in a level I trauma center[J]. Global Spine J, 2015, 5(2): 93-101.

[18] Hlubek R J, Bohl M A, Cole T S, et al. Safety and accuracy of freehand versus navigated C2 pars or pedicle screw placement[J]. Spine J, 2018, 18(8): 1374- 1381.

[19] YU Z, ZHANG G, CHEN X, et al. Application of a novel 3D drill template for cervical pedicle screw tunnel design: a cadaveric study[J]. Eur Spine J, 2017, 26(9): 2348-2356.

[20] SUN J C, SUN K Q, SUN S X, et al. Computer-assisted virtual operation planning in anterior controllable anterior-displacement and fusion surgery for ossification of the posterior longitudinal ligament based on actual computed tomography data[J]. Clin Neurol Neurosurg, 2019. DOI: 10.1016/j.clineuro.2018.12.019.

[21] Walker C T, Kakarla U K, Chang S W, et al. History and advances in spinal neurosurgery[J]. J Neurosurg Spine, 2019, 31(6): 775-785.

[22] D’Souza M, Gendreau J, Feng A, et al. Roboticassisted spine surgery: history, efficacy, cost, and future trends[J]. Robot Surg, 2019. DOI: 10.2147/RSRR. S190720.

[23] Hamelinck H K, Haagmans M, Snoeren M M, et al. Safety of computer-assisted surgery for cannulated hip screws[J]. Clin Orthop Relat Res, 2007. DOI: 10.1097/01.blo.0000238815.40777.d2.

[24] Farah K, Meyer M, Prost S, et al. Cirq® robotic assistance for minimally invasive C1-C2 posterior instrumentation: report on feasibility and safety[J]. Oper Neurosurg(Hagerstown), 2020. DOI: 10.1093/ons/ opaa208.

[25] HE M, HAN W, ZHAO C P, et al. Evaluation of a Bi-planar robot navigation system for insertion of cannulated screws in femoral Neck fractures[J]. Orthop Surg, 2019, 11(3): 373-379.

[26] Krettek C, Geerling J, Bastian L, et al. Computer aided tumor resection in the pelvis[J]. Injury, 2004. DOI: 10.1016/j.injury.2004.05.014.

[27] Wong K C, Kumta S M. Computer-assisted tumor surgery in malignant bone tumors[J]. Clin Orthop Relat Res, 2013, 471(3): 750-761.

[28] Gerbers J G, Stevens M, Ploegmakers J J, et al. Computer-assisted surgery in orthopedic oncology [J]. Acta Orthop, 2014, 85(6): 663-669.

[29] Ritacco L E, Milano F E, Farfalli G L, et al. Accuracy of 3-D planning and navigation in bone tumor resection[J]. Orthopedics, 2013, 36(7): e942-e950.

[30] Aponte-Tinao L, Ritacco L E, Ayerza M A, et al.Does intraoperative navigation assistance improve bone tumor resection and allograft reconstruction results?[J]. Clin Orthop Relat Res, 2015, 473(3): 796-804.

[31] Young P S, Bell S W, Mahendra A. The evolving role of computer-assisted navigation in musculoskeletal oncology[J]. Bone Joint J, 2015, 97-B(2): 258-264.

[32] Tiwari A, Yadlapalli A, Verma V. Computer navigation assisted tumor surgery for internal hemipelvectomyEarly experience[J]. J Clin Orthop Trauma, 2020. DOI: 10.1016/j.jcot.2020.08.016.

[33] YANG Y, LI Y, ZHANG Q, et al. A case-control study of computer navigation assisted resection of primary sacral chordoma above sacrum 3 level[J]. J Bone Oncol, 2020. DOI: 10.1016/j.jbo.2020.100303.

[34] Musahl V, Burkart A, Debski R E, et al. Accuracy of anterior cruciate ligament tunnel placement with an active robotic system: a cadaveric study[J]. Arthroscopy, 2002, 18(9): 968-973.

[35] Picard F, DiGioia A M, Moody J, et al. Accuracy in tunnel placement for ACL reconstruction. comparison of traditional arthroscopic and computer-assisted navigation techniques[J]. Comput Aided Surg, 2001, 6(5): 279-289.

[36] Burkart A, Debski R E, McMahon P J, et al. Precision of ACL tunnel placement using traditional and robotic techniques[J]. Comput Aided Surg, 2001, 6(5): 270- 278.

[37] Klos T V, Habets R J, Banks A Z, et al. Computer assistance in arthroscopic anterior cruciate ligament reconstruction[J]. Clin Orthop Relat Res, 1998. DOI: 10.1097/00003086-199809000-00009.

[38] Luites J W, Wymenga A B, Blankevoort L, et al. Accuracy of a computer-assisted planning and placement system for anatomical femoral tunnel positioning in anterior cruciate ligament reconstruction[J]. Int J Med Robot, 2014, 10(4): 438- 446.

[39] Barrett I, Ramakrishnan A, Cheung E. Safety and efficacy of intraoperative computer-navigated versus non-navigated shoulder arthroplasty at a tertiary referral[J]. Orthop Clin North Am, 2019. DOI: 10.1016/j.ocl.2018.08.004.

印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈