近年来计算机相关技术飞速发展,为机器人在医学领域的应用奠定了坚实的基础,除了应用较多的外科领域之外,机器人辅助手术系统在经皮冠状动脉介入治疗方面也有所建树。与传统介入治疗不同,机器人辅助手术系统能够使术者所受的辐射噩减少 95% 以上,且操作更加精准,但仍存在设备庞大、费用高昂等问题。本文旨在对机器人手术历史及其在经皮冠状动脉介入治疗的应用做一综述。
In recent years, the rapid development of computer-related technology has laid a solid foundation for the application of robot in the field of medicine. In addition to the application of surgical fields, robot-assisted surgical system has also made achievements in percutaneous coronary intervention (PCI) treatment. Unlike traditional interventional therapies, with more accurate operations, robot-assisted surgical systems can reduce 95% radiation exposure at least. However, robot-assisted
收 稿 日 期 :2020-03-17 录 用 日 期 :2020-08-15
Received Date: 2020-03-17 Accepted Date: 2020-08-15
基金项目:国家自然科学基金面上项目(61873304)
Foundation Item: General Program of National Natural Science Foundation of China(61873304)
通讯作者:段晓琴,Email:15204309769@163.com
Corresponding Author: DUAN Xiaoqin, Email: 15204309769@163. com
引用格式:陈安天,王晨雨,段晓琴 . 机器人技术在冠状动脉介入治疗中的应用与研究进展 [J]. 机器人外科学杂志,2021,2(1): 60-65.
Citation: CHEN A T, WANG C Y, DUAN X 0. Research and application progress of robot technology in percutaneous coronary intervention [J]. Chinese Journal of Robotic Surgery, 2021, 2(1): 60-65.
[1]Johnsen E G, Corliss W R. Teleoperators and Human Augmentation. An Aec-Nasa Technology Survey[M]. Atomic Energy Commission, Washington, D. C. National Aeronautics and Space Adminstration, Washington, D. C. 1967: 273.
[2]Giambruno V, Chu M W, Fox S, et al. Robotic-Assisted Coronary Artery Bypass Surgery: An 18-Year Single- Centre Experience[J]. Int J Med Robot, 2018, 14(3): e1891.
[3]WANG X M, Lee K H, Fu Denny K C, et al. Experimental Validation of Robot - Assisted Cardiovascular Catheterization: Model-Based Versus Model-Free Control[J]. Int J Comput Assist Radiol Surg, 2018, 13(6): 797-804.
[4]Leal Ghezzi T, Campos Corleta O. 30 Years of Robotic Surgery[J]. World J Surg, 2016, 40(10): 2550-2557.
[5]Paul H A, Bargar W L, Mittlestadt B, et al. Development of a Surgical Robot for Cementless Total Hip Arthroplasty[J]. Clin Orthop Relat Res, 1992, (285): 57-66.
[6]Unger S W, Unger H M, Bass R T. Aesop Robotic Arm[J]. Surg Endosc, 1994, 8(9): 1131.
[7]Harris S J, Arambula-Cosio F, Mei Q, et al. The Probot—an Active Robot for Prostate Resection[J]. Proc Inst Mech Eng H, 1997, 211(4): 317-325.
[8]Beyar R, Gruberg L, Deleanu D, et al. Remote- Control Percutaneous Coronary Interventions: Concept, Validation, and First-in-Humans Pilot Clinical Trial[J]. J Am Coll Cardiol, 2006, 47(2): 296-300.
[9]Weisz G, Metzger D C, Caputo R P, et al. Safety and Feasibility of Robotic Percutaneous Coronary Intervention: Precise (Percutaneous Robotically- Enhanced Coronary Intervention) Study[J]. J Am Coll Cardiol, 2013, 61(15): 1596-1600.
[10]Swaminathan R V, Rao S V. Robotic- Assisted Transradial Diagnostic Coronary Angiography[J]. Catheter Cardiovasc Interv, 2018, 92(1): 54-57.
[11]Smitson C, Ang L, Reeves R, et al. Tct-124 Safety and Feasibility of a Novel, Second Generation Robotic- Assisted System for Percutaneous Coronary Intervention: First-in-Human Report[J]. Journal of the American College of Cardiology, 2017, 70(18): B55-B56.
[12]Murphy E, Rahimtoola S H. Transluminal Dilatation for Coronary-Artery Stenosis[J]. Lancet, 1978, 1(8073): 1093.
[13]宋晨曦 , 杨伟宪 , 半雷 , 等. 亚洲首例机器人辅助经皮冠状动脉介入治疗报道 [J]. 中国循环杂志 , 2018, 33(12): 1237-1238.
[14]Kapur V, Smilowitz N R, Weisz G. Complex Robotic- Enhanced Percutaneous Coronary Intervention[J]. Catheter Cardiovasc Interv, 2014, 83(6): 915-921.
[15]Mahmud E, Naghi J, Ang L, et al. Demonstration of the Safety and Feasibility of Robotically Assisted Percutaneous Coronary Intervention In complex Coronary Lesions: Results of the Cora-Pci Study (Complex Robotically Assisted percutaneous Coronary Intervention) [J]. JACC: Cardiovascular Interventions, 2017, 10(13): 1320-1327.
[16]Naghi J J, Harrison J, Ang L, et al. Robotic Versus Manual Percutaneous Coronary Intervention: Effect on Procedure Time for Simple and Complex Lesions[J]. Journal of the American College of Cardiology, 2016,67(13): 229.
[17]Lo N, Gutierrez V, Swaminathan R V. Robotic-Assisted Percutaneous Coronary Intervention[J]. Current Treatment Options in Cardiovascular Medicine, 2018, 20(2): 14.
[18]Swaminathan R V, Rao S V. Robotic- Assisted Transradial Diagnostic Coronary Angiography[J]. Catheterization and Cardiovascular Interventions, 2018, 92(1): 54-57.
[19]Lee J M, Park J, Kang J, et al. Comparison among Drug- Eluting Balloon, Drug-Eluting Stent, and Plain Balloon Angioplasty for the Treatment of in-Stent Restenosis: A Network Meta-Analysis of 11 Randomized, Controlled Trials[J]. JACC Cardiovasc Interv, 2015, 8(3): 382-394.
[20]Costa M A, Angiolillo D J, Tannenbaum M, et al. Impact of Stent Deployment Procedural Factors on Long-Term Effectiveness and Safety of Sirolimus-Eluting Stents (Final Results of the Multicenter Prospective Stllr Trial) [J]. Am J Cardiol, 2008, 101(12): 1704-1711.
[21]Campbell P T, Mahmud E, Marshall J J. Interoperator and Intraoperator (in)Accuracy of Stent Selection Based on Visual Estimation[J]. Catheter Cardiovasc Interv, 2015, 86(7): 1177-1183.
[22]Bezerra H G, Mehanna E, W Vetrovec G, et al. Longitudinal Geographic Miss (Lgm) in Robotic Assisted Versus Manual Percutaneous Coronary Interventions[J]. J Interv Cardiol, 2015, 28(5): 449-455.
[23]Madder R D, VanOosterhout S M, Jacoby M E, et al. Percutaneous Coronary Intervention Using a Combination of Robotics and Telecommunications by an Operator in a Separate Physical Location from the Patient: An Early Exploration into the Feasibility of Telestenting (the Remote-Pci Study) [J]. EuroIntervention, 2017, 12(13): 1569-1576.
[24]Madder R D, VanOosterhout S, Mulder A, et al. Feasibility of Robotic Telestenting over Long Geographic Distances: A Pre-Clinical Ex Vivo and in Vivo Study[J]. EuroIntervention, 2019, 15(6): e510-e512.
[25]Mahmud E, Pourdjabbar A, Ang L, et al. Robotic Technology in Interventional Cardiology: Current Status and Future Perspectives[J]. Catheter Cardiovasc Interv, 2017, 90(6): 956-962.
[26]Maor E, Eleid M F, Gulati R, et al. Current and Future Use of Robotic Devices to Perform Percutaneous Coronary Interventions: A Review[J]. Journal of the American Heart Association, 2017, 6(7): e006239.
[27]Picano E, Andreassi M G, Piccaluga E, et al. Occupational Risks of Chronic Low Dose Radiation Exposure in Cardiac Catheterisation Laboratory: The Italian Healthy Cath Lab Study[J]. EMJ Int Cardiol, 2013, 1: 50-58.
[28]Plourde G, Pancholy S B, Nolan J, et al. Radiation Exposure in Relation to the Arterial Access Site Used for Diagnostic Coronary Angiography and Percutaneous Coronary Intervention: A Systematic Review and Meta- Analysis[J]. Lancet, 2015, 386(10009): 2192-2203.
[29]Vano E, Kleiman N J, Duran A, et al. Radiation Cataract Risk in Interventional Cardiology Personnel[J]. Radiat Res, 2010, 174(4): 490-495.
[30]CAO Q, JIAO Y, YU T, et al. Association between Mild Thyroid Dysfunction and Clinical Outcome in Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention[J]. Cardiol J, 2018. DOI: 10. 5603/CJ. a2018. 0097.
[31]吴九涛 , 刘凯 , 谭传辉 , 等 . 亚临床甲状腺功能减退症对经皮冠状动脉介入治疗患者临床结局的影响 [J]. 中国循环杂志 , 2019, 34(2): 144-148.
[32]Gurdogan M, Ari H. The Effect of Thyroid Functions on Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography and Percutaneous Coronary Intervention[J]. J Pak Med Assoc, 2019, 69(10): 1453- 1458.
[33]Chakravartti J, Rao S V. Robotic Assisted Percutaneous Coronary Intervention: Hype or Hope?[J]. J Am Heart Assoc, 2019, 8(13): e012743.
[34]李成利 . 磁共振介入应用与前景 [J]. 介入放射学杂志 , 2019, 28(11): 1017-1019.