中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

骨科手术机器人的临床应用与进展

Clinical applications and research progress of orthopedic surgical robot

作者:许梓健,顾洪生,蒯声政,黄霖,张睿,周文钰

Vol. 3 No. 5 Oct. 2022 DOI: 10.12180/j.issn.2096-7721.2022.05.004 发布日期:2023-10-19
关键词:骨科疾病;骨科手术;机器人手术系统;微创;学习曲线

作者简介:

手术机器人具有智能、微创、精准的特点,可提供术前规划、手术导航及微创精准操作等功能,为临床医生的决策判断和操作提供了保障,同时在骨科领域的应用中也越来越广泛。近30年,骨科手术机器人发展迅速,在国内外已有多款成熟产品应用于临床中,涵盖了关节、脊柱、创伤及运动等学科,其中应用于关节置换手术与椎弓根螺钉植入术的机器人技术相对成熟,正逐步向自动化方向发展,且有效性与安全性已得到大量研究证实。目前限制机器人推广的主要原因在于手术费用高、医生学习曲线长、临床效果及安全性仍缺乏长期临床研究证据支持等。因此,机器人未来的发展方向应是扩大应用范围,进而提高手术机器人的成本效益,同时开发出适合于骨科临床术式和应用习惯的软件系统,并将此手术系统与遥控操作、3D打印等技术结合。

Robotic surgery is characterized with intelligence, minimally invasive and precision, which could guarantee proper decision-making and precise operation by providing accurate preoperative planning, surgical navigation and minimally invasive procedure. Recently, surgical robot is more and more widely used in the field of orthopedics. Orthopedic surgical robots have developed rapidly in the past 30 years, and many mature products have been put into clinical practice, including robots for joint, spine, trauma, kinematics et al. Relatively, surgical robots in joint replacement surgery and pedicle screw implantation are more developed and gradually progressed to automation, company represents the advanced level, which could be applied in many fields, and its effectiveness and safety have been confirmed by a large number of studies. At present, the main limitations of surgical robots are the high cost, long learning curve, uncertain clinical effect and lacking of long-term clinical studies. Therefore, to expand application fields and improve the cost-effectiveness should be the development direction of surgical robots. Meanwhile, to design a system suitable for orthopedic surgeons combining with remote control, 3D printing should be the priority in the development of orthopedic surgical robot.


稿件信息

收稿日期:2021-05-28 录用日期:2021-08-28

Received Date: 2021-05-28 Accepted Date: 2021-08-28

基金项目:国家自然科学基金(12102268)

Foundation Item: National Natural Science Foundation of China (12102268)

通讯作者:许梓健,Email:627983124@qq.com

Corresponding Author: XU Zijian, Email: 627983124@qq.com

引用格式:许梓健,顾洪生,蒯声政,等. 骨科手术机器人的临床应用与进展[J]. 机器人外科学杂志(中英文),2022,3(5):376-387.

Citation: XU Z J, GU H S, KUAI S Z, et al. Clinical applications and research progress of orthopaedic surgical robot[J]. Chinese Journal of Robotic Surgery, 2022, 3(5): 376-387.


参考文献

[1] Leal Ghezzi T, Campos Corleta O. 30 years of robotic surgery[J]. World J Surg, 2016, 40(10): 2550-2557.

[2] Schneider J, Kalender W. Geometric accuracy in robotassisted total hip replacement surgery[J]. Comput Aided Surg, 2003, 8(3): 135-145.

[3] Liow M H L, Chin P L, Pang H N, et al. THINK surgical TSolution-One (Robodoc) total knee arthroplasty[J]. SICOT J, 2017.

 DOI: 10.1051/sicotj/2017052.

[4] 张子安, 张海宁, 李海燕, 等. 机器人辅助技术在全膝关节置换手术中的应用[J]. 中国矫形外科杂志, 2020, 28(11): 937-941.

[5] Siebert W, Mai S, Kober R, et al. Technique and first clinical results of robot-assisted total knee replacement[J]. Knee, 2002, 9(3): 173-180.

[6] Song E K, Seon J K, Park S J, et al. Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study[J]. Knee Surg Sports Traumatol Arthrosc, 2011,19(7): 1069-1076.

[7] Kim S M, Park Y S, Ha C W, et al. Robot-assisted implantation improves the precision of component position in minimally invasive TKA[J]. Orthopedics,2012, 35(9): e1334-1339.

[8] Park S E, Lee C T. Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty[J]. J Arthroplasty, 2007, 22(7): 1054-1059.

[9] Jacofsky D J, Allen M. Robotics in arthroplasty: a comprehensive review[J]. J Arthroplasty, 2016, 31(10): 2353-2363.

[10] Cobb J, Henckel J, Gomes P, et al. Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system[J]. J Bone Joint Surg Br, 2006, 88(2): 188-197.

[11] Lonner J H, Smith J R, Picard F, et al. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study[J]. Clin Orthop Relat Res, 2015, 473(1): 206-212.

[12] Lonner J H, John T K, Conditt M A. Robotic armassisted UKA improves tibial component alignment:a pilot study[J]. Clin Orthop Relat Res, 2010, 468(1):141-146.

[13] Jones B, Blyth M J, MacLean A, et al. Accuracy of UKA implant positioning and early clinical outcomes in a RCT comparing robotic assisted and manual surgery [R].Orlando: 13th Annual CAOS Meeting, 2013.

[14] Coon T, Roche M, Buechel F, et al. Short to mid term survivorship of robotic arm assisted UKA: a multicenter study [R] . Pan Pacific Orthop Congress, 2014.

[15] Plate J F, Mofidi A, Mannava S, et al. Achieving accurate ligament balancing using robotic-assisted unicompartmental knee arthroplasty[J]. Adv Orthop,2013.DOI: 10.1155/2013/837167.

[16] van der List J P, Chawla H, Joskowicz L, et al. Current state of computer navigation and robotics in unicompartmental

and total knee arthroplasty: a systematic review with metaanalysis[J]. Knee Surg Sports Traumatol Arthrosc, 2016,

24(11): 3482-3495.

[17] Bargar W L, BauerA, Borner M. Primary and revision total hip replacement using the Robodoc system[J]. Clin Orthop Relat Res, 1998.DOI: 10.1097/00003086-199809000-00011.

[18] Nakamura N, Sugano N, Nishii T, et al. A comparison between robotic-assisted and manual implantation of cementless total hip arthroplasty[J]. Clin Orthop Relat Res, 2010, 468(4): 1072-1081.

[19] Domb B G, Redmond J M, Louis S S, et al. Accuracy of component positioning in 1980 total hip arthroplasties: a comparative analysis by surgical technique and mode of guidance[J]. J Arthroplasty, 2015, 30(12): 2208-2218.

[20] Bukowski B R, Anderson P, Khlopas A, et al. Improved functional outcomes with robotic compared with manual total hip arthroplasty[J]. Surg Technol Int, 2016. PMID:27728953.

[21] Kayani B, Konan S, Ayuob A, et al. The current role of robotics in total hip arthroplasty[J]. EFORT Open Rev, 2019, 4(11): 618-625.

[22] Ghasem A, Sharma A, Greif D N, et al. The arrival of robotics in spine surgery: a review of the literature[J].Spine (Phila Pa 1976), 2018, 43(23): 1670-1677.

[23] Barzilay Y, Liebergall M, Fridlander A, et al. Miniature robotic guidance for spine surgery-introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres[J]. Int J Med Robot, 2006, 2(2): 146-153.

[24] Sukovich W, Brink-Danan S, Hardenbrook M. Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist[J]. Int J Med Robot, 2006, 2(2): 114-122.

[25] 蔡尚欢, 宋永伟, 曹向阳, 等. 骨科机器人应用现状与研究进展[J]. 山东医药, 2018, 58(44): 90-93.

[26] Huang M, Tetreault T A, Vaishnav A, et al. The current state of navigation in robotic spine surgery[J]. Ann Transl Med, 2021, 9(1): 86.

[27] Lonjon N, Chan-Seng E, Costalat V, et al. Robotassisted spine surgery: feasibility study through a prospective case-matched analysis[J]. Eur Spine J,2016, 25(3): 947-955.

[28] Huntsman K T, Ahrendtsen L A, Riggleman J R, et al.Robotic-assisted navigated minimally invasive pedicle screw placement in the first 100 cases at a single institution[J]. J Robot Surg, 2020, 14(1): 199-203.

[29] Godzik J, Walker C T, Hartman C, et al. A quantitative assessment of the accuracy and reliability of robotically guided percutaneous pedicle screw placement:technique and application accuracy[J]. Oper Neurosurg (Hagerstown), 2019, 17(4): 389-395.

[30] Beutler W J, Peppelman W J, DiMarco L A. The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report[J]. Spine (Phila Pa 1976), 2013, 38(4): 356-363.

[31] Tian W. Robot-assisted posterior c1-2 transarticular screw fixation for atlantoaxial instability: a case report[J]. Spine (Phila Pa 1976), 2016, 41(Suppl 19):B2-B5.

[32] HAN X, TIAN W, LIU B, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial[J]. J Neurosurg Spine, 2019.DOI: 10.3171/2018.10.SPINE18487.

[33] Fatima N, Massaad E, Hadzipasic M, et al. Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis[J]. Spine J, 2021,21(2): 181-192.

[34] LI J, HUANG L, ZHOU W, et al. Evaluation of a new spinal surgical robotic system of Kirschner wire placement for lumbar fusion: a multi-centre, randomised controlled clinical study[J]. Int J Med Robot, 2021,17(2): e2207.

[35] YUAN W, CAO W, MENG X, et al. Learning curve of robot-assisted percutaneous kyphoplasty for osteoporotic vertebral compression fractures[J]. World Neurosurg,2020.DOI: 10.1016/j.wneu.2020.02.110.

[36] Farber S H, Pacult M A, Godzik J, et al. Robotics in spine surgery: a technical overview and review of key concepts[J]. Front Surg, 2021.DOI: 10.3389/fsurg.2021.578674.

[37] ZHANG Q, HAN X G, XU Y F, et al. Robotic navigation during spine surgery[J]. Expert Rev Med Devices, 2020,17(1): 27-32.

[38] Karthik K, Colegate-Stone T, Dasgupta P, et al. Robotic surgery in trauma and orthopaedics: a systematic review[J]. Bone Joint J, 2015, 97-B(3): 292-299.

[39] DUAN S J, LIU H S, WU W C, et al. Robot-assisted percutaneous cannulated screw fixation of femoral neck fractures: preliminary clinical results[J]. Orthop Surg,2019, 11(1): 34-41.

[40] WU X B, WANG J Q, SUN X, et al. Guidance for the treatment of femoral neck fracture with precise minimally invasive internal fixation based on the orthopaedic surgery robot positioning system[J]. Orthop Surg, 2019, 11(3): 335-340.

[41] ZHU Z D, XIAO C W, TAN B, Et al. TiRobot-assisted percutaneous cannulated screw fixation in the treatment of femoral neck fractures: a minimum 2-year follow-up of 50 patients[J]. Orthop Surg, 2021, 13(1): 244-252.

[42] HUNG S S, LEE M Y. Functional assessment of a surgical robot for reduction of lower limb fractures[J]. Int J Med Robot, 2010, 6(4): 413-421.

[43] Garcia J C Jr, Lebailly F, Mantovani G, et al.Telerobotic manipulation of the brachial plexus[J]. J Reconstr Microsurg, 2012, 28(7): 491-494.

[44] Dagnino G, Georgilas I, Morad S, et al. Image-guided surgical robotic system for percutaneous reduction of joint fractures[J]. Ann Biomed Eng, 2017, 45(11):2648-2662.

[45] Stengel D, Klufmöller F, Rademacher G, et al.Functional outcomes and health-related quality of life after robot-assisted anterior cruciate ligament reconstruction with patellar tendon grafts[J]. Knee Surg Sports Traumatol Arthrosc, 2009, 17(5): 446-455.

[46] Bozkurt M, Apaydin N, Işik C, et al. Robotic arthroscopic surgery: a new challenge in arthroscopic surgery Part-I: robotic shoulder arthroscopy; a cadaveric feasibility study[J]. Int J Med Robot, 2011, 7(4): 496-500.

[47] 胡汉, 张中伟, 徐红伟, 等. 骨科手术机器人辅助重建急性后交叉韧带断裂1 例[J]. 中国骨伤, 2020,33(10): 979-981.

[48] 四川省人民医院骨科成功完成国内首例天玑骨科机器人辅助下膝关节镜儿童后交叉韧带胫骨止点骨折复位内固定术[J]. 临床医学研究与实践, 2020,

5(34): 202.


印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈