目的:评估机器人辅助亚肺叶联合切除手术的围术期安全性和短期疗效。方法:回顾性收集 2015 年1 月 ~2020 年 8 月在浙江大学医学院附属第一医院胸外科行亚肺叶联合切除手术的 131 例早中期非小细胞肺癌(Non-small cell lung cancer,NSCLC)患者的临床资料,并根据手术方式分为机器人辅助胸腔镜手术(Robot-assisted thoracic surgery,RATS)组(20 例)和电视胸腔镜辅助手术(Video-assisted thoracic surgery,VATS)组(111 例)。根据基线资料对两组患者进行倾向性评分匹配,比较匹配后两组的围手术期结果。结果:倾向性评分匹配后最终纳入 RATS 组患者 18 例,VATS 组患者 56 例。RATS 组清扫了更多的 N1 淋巴结站数(P<0.05)和 N1 淋巴结个数(P<0.05),并且发现了更多的转移阳性的 N2 淋巴结(P<0.05)。RATS 组的术中出血量和胸腔引流管置放时间略少于 VATS 组,但差异无统计学意义(P>0.05)。RATS 组的住院费用高于 VATS 组,但差异无统计学意义(P>0.05)。两组在淋巴结升期率、术后住院天数、术后第 1d 数字评分法疼痛(Numeric rating scales,NRS)评分、围术期并发症、术后辅助治疗方面无统计学差异。结论:机器人亚肺叶联合切除手术具有与胸腔镜手术相似的安全性和短期疗效,但RATS 清扫淋巴结更彻底,且可减少术中出血和减少胸腔引流管置放时间。
Objective: To evaluate the perioperative safety and short-term outcomes of RATS in combined sublobectomy. Methods: A total of 131 patients with early to mid-stage NSCLC who underwent combined sublobectomy in department of thoracic surgery, the First Affiliated Hospital to Zhejiang University School of Medicine from January 2015 to August 2020 were selected and divided into Robot-assisted surgery (RATS) group (20 cases) and Video-assisted thoracoscopic surgery (VATS) group (111 cases) based on different surgical approaches. According to baseline data, propensity score matching (PSM) was performed on the two groups of patients and the perioperative results were compared after matching. Results: After PSM, 18 patients in the RATS group and 56 patients in the VATS group were finally included. RATS group dissected more N1 lymph nodes (P<0.05) and stations (P<0.05), and defined more metastatic positive N2 lymph nodes (P<0.05). The intraoperative blood loss and time of thoracic drainage in the RATS group were slightly lower than those in the VATS group, but with no statistical significance (P>0.05). In addition, the hospitalization cost of the RATS group was higher than that of VATS group, but with no statistical significance (P>0.05). No statistical differences between the two groups on lymph node upstaging rate, postoperative hospital stay, NRS1 (1st day after surgerg), perioperative complications, or postoperative adjuvant treatment were found. Conclusion: RATS in combined sublobectomy has similar safety and short-term efficacy to VATS, but it can do better in lymph node dissection and reducing intraoperative blood loss and catheter indwelling time
收稿日期:2021-03-08 录用日期:2021-07-21
Received Date: 2021-03-08 Accepted Date: 2021-07-21
基金项目:国家重点研发计划(2017YFC0113500);浙江省重大科技专项计划项目(2020C03058);浙江省肺部肿瘤诊治技术研究中心(JBZX-202007);浙江省医药卫生科技计划(2019KY069)
Foundation Item: The National Key Research and Development Program of China(2017YFC0113500); Major Science and Technology Projects of Zhejiang Province(2020C03058); Lung Tumor Diagnosis and Treatment Technology Research Center of Zhejiang Province(JBZX-202007); Zhejiang Provincial Medical and Health Science and Technology Plan (2019KY069)
通讯作者:胡坚,Email:dr_hujian@zju.edu.cn
Corresponding Author: HU Jian, Email: dr_hujian@zju.edu.cn
引用格式:何天煜,王莺,刘佳聪,等 . VATS 与 RATS 精准解剖的亚肺叶联合切除术的回顾性队列研究 [J]. 机器人外科学杂志(中英文),2022,3(1):4-14.
Citation: HE T Y, WANG Y, LIU J C, et al. RATS and VATS in combined sublobectomy under precise anatomy: a retrospective cohort study [J]. Chinese Journal of Robotic Surgery, 2022, 3 (1): 4-14.
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: a cancer journal for clinicians, 2018. DOI. org/10.3322/caac.21492.
[2] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
[3] Scott W J, Howington J, Feigenberg S, et al. Treatment of non-small cell lung cancer stage I and stage II: ACCP evidence-based clinical practice guidelines (2nd edition) [J]. Chest, 2007, 132(3 Suppl): 234S-242S.
[4] Boffa D J, Allen M S, Grab J D, et al. Data from The Society of Thoracic Surgeons General Thoracic Surgery database: the surgical management of primary lung tumors[J]. J Thorac Cardiovasc Surg, 2008, 135(2): 247-254.
[5] Howington J A, Blum M G, Chang A C, et al. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: american college of chest physicians evidence-based clinical practice guidelines[J]. Chest, 2013, 143(5 Suppl): e278S-e313S.
[6] Yan T D, Black D, Bannon P G, et al. Systematic review and meta-analysis of randomized and nonrandomized trials on safety and efficacy of video-assisted thoracic surgery lobectomy for early-stage non-small-cell lung cancer[J]. J Clin Oncol, 2009, 27(15): 2553-2562.
[7] WEI S, CHEN M, CHEN N, et al. Feasibility and safety of robot-assisted thoracic surgery for lung lobectomy in patients with non-small cell lung cancer: a systematic review and meta-analysis[J]. World J Surg Oncol, 2017, 15(1): 98.
[8] HU X, WANG M. Efficacy and safety of robot-assisted thoracic surgery (RATS) compare with video-assisted thoracoscopic surgery (VATS) for lung lobectomy in patients with non-small cell lung cancer[J]. Comb Chem High Throughput Screen, 2019, 22(3): 169-178.
[9] HU J, CHEN Y, DAI J, et al. Perioperative outcomes of robot-assisted vs video-assisted and traditional open thoracic surgery for lung cancer: a systematic review and network meta-analysis[J]. Int J Med Robot, 2020, 16(5): 1-14.
[10] Veronesi G, Novellis P, Voulaz E, et al. Robotassisted surgery for lung cancer: State of the art and perspectives[J]. Lung Cancer, 2016. DOI: 10.1016/ j.lungcan.2016.09.004.
[11] Demir A, Ayalp K, Ozkan B, et al. Robotic and videoassisted thoracic surgery lung segmentectomy for malignant and benign lesions[J]. Interact Cardiovasc Thorac Surg, 2015, 20(3): 304-309.
[12] Ginsberg R J, Rubinstein L V. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group[J]. Ann Thorac Surg, 1995, 60(3): 615-622; discussion 622-623.
[13] National Lung Screening Trial Research Team, Aberle D R, Adams A M, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening[J]. N Engl J Med, 2011, 365(5): 395-409.
[14] FAN J, WANG L, JIANG GN, et al. Sublobectomy versus lobectomy for stage I non-small-cell lung cancer, a meta-analysis of published studies[J]. Ann Surg Oncol, 2012, 19(2): 661-668.
[15] ZHANG Y, SUN Y, WANG R, et al. Meta-analysis of lobectomy, segmentectomy, and wedge resection for stage I non-small cell lung cancer[J]. J Surg Oncol, 2015, 111(3): 334-340.
[16] Veronesi G, Galetta D, Maisonneuve P, et al. Fourarm robotic lobectomy for the treatment of early-stage lung cancer[J]. J Thorac Cardiovasc Surg, 2010, 140(1): 19-25.
[17] Park B J, Flores R M, Rusch V W. Robotic assistance for video-assisted thoracic surgical lobectomy: technique and initial results[J]. J Thorac Cardiovasc Surg, 2006, 131(1): 54-59.
[18] Park B J, Melfi F, Mussi A, et al. Robotic lobectomy for non-small cell lung cancer (NSCLC): long-term oncologic results[J]. J Thorac Cardiovasc Surg, 2012, 143(2): 383-389.
[19] Yang H X, Woo K M, Sima C S, et al. Long-term survival based on the surgical approach to lobectomy for clinical stage i nonsmall cell lung cancer: comparison of robotic, video-assisted thoracic surgery, and thoracotomy lobectomy[J]. Ann Surg, 2017, 265(2): 431-437.
[20] Oh D S, Reddy R M, Gorrepati M L, et al. Roboticassisted, video-assisted thoracoscopic and open lobectomy: propensity-matched analysis of recent premier data[J]. Ann Thorac Surg, 2017, 104(5): 1733-1740.
[21] Ou S H, Zell J A. Prognostic significance of the number of lymph nodes removed at lobectomy in stage IA nonsmall cell lung cancer[J]. J Thorac Oncol, 2008, 3(8): 880-886.
[22] LIANG W, HE J, SHEN Y, et al. Impact of examined lymph node count on precise staging and long-term survival of resected non-small-cell lung cancer: a population study of the us seer database and a Chinese multi-institutional registry[J]. J Clin Oncol, 2017, 35(11): 1162-1170.
[23] Ludwig M S, Goodman M, Miller D L, et al. Postoperative survival and the number of lymph nodes sampled during resection of node-negative non-small cell lung cancer[J]. Chest, 2005, 128(3): 1545-1550.
[24] Osarogiagbon R U, Ogbata O, Yu X. Number of lymph nodes associated with maximal reduction of long-term mortality risk in pathologic node-negative non-small cell lung cancer[J]. Ann Thorac Surg, 2014, 97(2): 385-393.
[25] CAO J, XU J, HE Z, et al. Prognostic impact of lymphadenectomy on outcomes of sublobar resection for stage IA non-small cell lung cancer ≤ 2 cm[J]. J Thorac Cardiovasc Surg, 2018, 156(2): 796-805.e4.
[26] LIANG H, LIANG W, ZHAO L, et al. Robotic Versus Video-assisted Lobectomy/Segmentectomy for Lung Cancer: a meta-analysis[J]. Ann Surg, 2018, 268(2): 254-259.
[27] Wilson J L, Louie B E, Cerfolio R J, et al. The prevalence of nodal upstaging during robotic lung resection in early stage non-small cell lung cancer. Ann Thorac Surg, 2014, 97(6): 1901-1906; discussion 1906-1907.
[28] Reichert M, Steiner D, Kerber S, et al. A standardized technique of systematic mediastinal lymph node dissection by video-assisted thoracoscopic surgery (VATS) leads to a high rate of nodal upstaging in earlystage non-small cell lung cancer[J]. Surg Endosc, 2016, 30(3): 1119-1125.
[29] Lee B E, Shapiro M, Rutledge J R, et al. Nodal upstaging in robotic and video assisted thoracic surgery lobectomy for clinical N0 lung cancer[J]. Ann Thorac Surg, 2015, 100(1): 229-233; discussion 233-234.
[30] Licht P B, Jørgensen O D, Ladegaard L, et al. A national study of nodal upstaging after thoracoscopic versus open lobectomy for clinical stage I lung cancer[J]. Ann Thorac Surg, 2013, 96(3): 943-949; discussion 949-950.
[31] Kneuertz P J, Cheufou D H, D’Souza D M, et al. Propensity-score adjusted comparison of pathologic nodal upstaging by robotic, video-assisted thoracoscopic, and open lobectomy for non-small cell lung cancer[J]. J Thorac Cardiovasc Surg, 2019, 158(5): 1457-1466.e2.
[32] TONG Y, WEI P, WANG S, et al. Characteristics of postoperative pain after vats and pain-related factors: the experience in national cancer center of China[J]. J Pain Res, 2020. DOI: 10.2147/JPR.S249134.ecollection 2020.
[33] van der Ploeg A, Ayez N, Akkersdijk G P, et al. Postoperative pain after lobectomy: robot-assisted, video-assisted and open thoracic surgery[J]. J Robot Surg, 2020, 14(1): 131-136.