中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

机器人辅助手术自主性技术的进展

Progress of autonomous technology on robot-assisted surgery

作者:郭靖,吴迪,成卓奇,李长胜,刘超

Vol. 4 No. 4 Aug. 2023 DOI: 10.12180/j.issn.2096-7721.2023.04.001 发布日期:2023-10-19
关键词:手术机器人;自主式操作;人工智能

作者简介:

自 20 世纪 80 年代中期机器人技术被引入到手术室以来,医生和研究人员就一直寻求把更高智能化 的技术与机器人系统进行结合。与常规手术相比,具有更高智能化的手术机器人系统往往需要具备更高的安全性和 准确性,并能够通过配套的感知系统和当前所处的手术阶段来进行决策调整。虽然完全自主的手术机器人系统距真 正的临床使用还有一定距离,但随着技术的积累和发展,具备半自主和部分医生参与决策的机器人智能技术会逐渐 被引入到手术室,并为临床手术的开展提供了更好的平台。本文主要对当前机器人辅助手术及相关智能化技术的进 展进行总结和展望。

Since the first introduction of robotic system into the operating room in the mid-1980s, surgeons and scientific  researchers have been trying to integrate higher intelligent technologies with the robot-assisted surgery. Compared with traditional  surgeries, the intelligent robotic surgical system should possess higher accuracy and safety, and be able to make decisions based  on the results of matched sensing system and current surgical stage. Although fully autonomous robotic surgical systems are still  far from real operating room, it is envisioned that the development of related technologies will enable the clinical application of  semi-autonomous and partially surgeonscollaborated robotic systems, which would eventually lead to enhanced surgical platforms. In  this paper, the current development of autonomy technologies in robot-assisted surgery was introduced and discussed.

稿件信息

收稿日期:2021-08-24  录用日期:2022-05-26 

Received Date: 2021-08-24  Accepted Date: 2022-05-26 

基金项目:国家自然科学基金青年项目(61803103) 

Foundation Item: National Natural Science Foundation of China (61803103) 

通讯作者:李长胜,Email:lics@bit.edu.cn 

Corresponding Author: LI Changsheng, Email: lics@bit.edu.cn 

引用格式:郭靖,吴迪,成卓奇,等 . 机器人辅助手术自主性技术的进展 [J]. 机器人外科学杂志(中英文),2023,4(4): 281-298. 

Citation: GUO J, WU D, CHENG Z Q, et al. Progress of autonomous technology on robot-assisted surgery: a review [J]. Chinese Journal of Robotic Surgery, 2023, 4 (4): 281-298. 

注:吴迪,原单位为德国慕尼黑工业大学机械工程学院,现单位为比利时鲁汶大学机械工程系

参考文献

[1] Yip M, Das N. Robot autonomy for surgery. In the  encyclopedia of MEDICAL ROBOTICS: volume 1  minimally invasive surgical robotics[M]. New Jersey:  World Scientific, 2019: 281-313. 

[2] Yang G Z, Cambias J, Cleary K, et al. Medical  robotics—regulatory, ethical, and legal considerations  for increasing levels of autonomy[J]. Sci Robot, 2017,  2(4): 8638. 

[3] Haidegger T. Autonomy for surgical robots: concepts  and paradigms[J]. IEEE Trans Med Robot Bionics,  2019, 1(2): 65-76.  

[4] 沈桐 , 宋成利 , 徐兆红 . 新型混联腹腔镜手术机器 人的运动学建模与优化 [J]. 机械科学与技术 , 2016,  35(1): 56-62. 

[5] Degani A, Choset H, Wolf A, et al. Highly articulated  robotic probe for minimally invasive surgery[C]//  Proceedings 2006 IEEE International Conference  on Robotics and Automation, 2006. ICRA 2006.  Piscataway: IEEE, 2006: 4167-4172. 

[6] Ota T, Degani A, Schwartzman D, et al. A highly  articulated robotic surgical system for minimally  invasive surgery[J]. Ann Thorac Surg, 2009, 87(4):  1253-1256. 

[7] XU K, ZHAO J R, FU M X. Development of the SJTU  unfoldable robotic system (SURS) for single port  laparoscopy[J]. IEEE ASME Trans Mechatron, 2014,  20(5): 2133-2145. 

[8] Kim Y H, Park Y J, In H K, et al. Design concept of  hybrid instrument for laparoscopic surgery and its  verification using scale model test[J]. IEEE ASME  Trans Mechatron, 2015, 21(1): 142-153. 

[9] Breedveld P, Stassen H G, Meijer D W, et al.  Manipulation in laparoscopic surgery: overview of  impeding effects and supporting aids[J]. J Laparoendosc  Adv Surg Tech A, 1999, 9(6): 469-480. 

[10] Manzey D, Strauss G, Trantakis C, et al. Automation  in surgery: a systematic approach[J]. Surg Technol Int,  2009, PMID: 19579188. 

[11] Harris S J, Arambula-Cosio F, Mei Q, et al. The  Probot—an active robot for prostate resection[J]. Proc  Inst Mech Eng H, 1997, 211(4): 317-325. 

[12] Mei Q, Harris S J, Arambula-Cosio F, et al. PROBOT— a computer integrated prostatectomy system[C]//  In International Conference on Visualization in  Biomedical Computing. Berlin, Heidelberg: Springer,  1996: 581-590. 

[13] Rodriguez Y, Baena F, Davies B. Robotic surgery: from  autonomous systems to intelligent tools[J]. Robotica,  2010, 28(2): 163-170. 

[14] Jakopec M, Harris S J, Baena y, et al. Acrobot: a “handson” robot for total knee replacement surgery[C]// In 7th  International Workshop on Advanced Motion Control.  Proceedings (Cat. No. 02TH8623). Piscataway: IEEE.  2002: 116-120. 

[15] Hagag B, Abovitz R, Kang H, et al. RIO: Roboticarm interactive orthopedic system MAKOplasty: user  interactive haptic orthopedic robotics[M]. Boston, MA:  Springer, 2011: 219-246.  

[16] Eggers G, Mühling J, Marmulla R. Image-to-patient  registration techniques in head surgery[J]. Int J Oral  Maxillofac Surg, 2006, 35(12): 1081-1095. 

[17] Moustris G P, Hiridis S C, Deliparaschos K M, et al.  Evolution of autonomous and semi-autonomous robotic  surgical systems: a review of the literature[J]. Int J Med  Robot, 2011, 7(4): 375-392. 

[18] Sayeh S, Wang J, Main W T, et al. Respiratory motion  tracking for robotic radiosurgery. In Treating tumors that  move with respiration[M]. Berlin, Heidelberg: Springer,  2007: 15-29. 

[19] Chen Z H, Deguet A, Taylor R, et al. An open-source  hardware and software platform for telesurgical robotics  research[J]. SACAI Workshop at MICCAI 2013, 2013.  DOI: 10.54294/2dcog6. 

[20] Murali A, Sen S, Kehoe B, et al. Learning by  observation for surgical subtasks: multilateral cutting of  3D viscoelastic and 2D orthotropic tissue phantoms[C]//  In 2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE. 2015: 1202- 1209.  

[21] Hannaford B, Rosen J, Friedman D W, et al. Raven-II:  an open platform for surgical robotics research[J]. IEEE  Trans Biomed Eng, 2012, 60(4): 954-959. 

[22] Hu D, Gong Y, Hannaford B, et al. Semi-autonomous  simulated brain tumor ablation with RAVEN Ⅱ  surgical robot using behavior tree[C]// In 2015 IEEE  International Conference on Robotics and Automation  (ICRA). Piscataway: IEEE, 2015: 3868-3875. 

[23] Kehoe B, Kahn G, Mahler J, et al. Autonomous  multilateral debridement with the raven surgical  robot[C]// In 2014 IEEE International Conference on  Robotics and Automation (ICRA) . Piscataway: IEEE,  2014: 1432-1439. 

[24] Su H, Danioni A, Mira R M, et al. Experimental  validation of manipulability optimization control of a  7-DoF serial manipulator for robot-assisted surgery[J].  Int J Med Robot, 2021, 17(1): 1-11. 

[25] Maris B, Tenga C, Vicario R, et al. Toward autonomous  robotic prostate biopsy: a pilot study[J]. Int J Comput  Assist Radiol Surg, 2021. DOI: 10.1007/s11548-021- 02437-7. 

[26] TANG A, CAO Q, TAN H, et al. Motion Control of a  Master-Slave Minimally Invasive Surgical Robot based  on the Hand-Eye-Coordination. In Computer Aided  Surgery[M]. Tokyo: Springer, 2016: 57-71. [27] LUO D, LIU Y, ZHU H, et al. The MicroHand S  robotic-assisted versus Da Vinci robotic-assisted radical  resection for patients with sigmoid colon cancer: a  single-center retrospective study[J]. Surg Endosc, 2020,  34(8): 3368-3374. 

[28] LI C, GU X, XIAO X, et al. Flexible robot with variable  stiffness in transoral surgery[J]. IEEE ASME Trans  Mechatron, 2019, 25(1): 1-10. 

[29] FENG M, FU Y, PAN B, et al. Development of a  medical robot system for minimally invasive surgery[J].  Int J Med Robot Comp, 2012, 8(1): 85-96. 

[30] Sun L W, Van Meer F, Bailly Y, et al. Design  and development of a da vinci surgical system  simulator[C]//2007 International Conference on  Mechatronics and Automation. Piscataway: IEEE, 2007:  1050-1055. 

[31] Kim D K, Park D W, Rha K H. Robot-assisted partial  nephrectomy with the REVO-I robot platform in porcine  models[J]. Eur Urol, 2016, 69(3): 541-542. 

[32] YUAN X, LIU D, GONG M. Design and research on a  shape memory alloy-actuated single-port laparoscopic  surgical robot[C]// 2014 IEEE International Conference  on Mechatronics and Automation. Piscataway: IEEE,  2014: 1654-1658.  

[33] Eastwood K, Looi T, Naguib H E, et al. Fluidic actuators  for minimally invasive neurosurgical instruments[C]//  In The Hamlyn Symposium on Medical Robotics. 2014:  75. 

[34] Garbin N, Di Natali C, Buzzi J, et al. Laparoscopic  tissue retractor based on local magnetic actuation[J]. J  Med Device, 2015, 9(1): 011005. 

[35] ZHANG L, YE M, CHAN P L, et al. Real-time surgical  tool tracking and pose estimation using a hybrid  cylindrical marker[J]. Int J Comput Assist Radiol Surg,  2017, 12(6): 921-930.  

[36] Pratt P, Jaeger A, Hughes-Hallett A, et al. Robust  ultrasound probe tracking: initial clinical experiences  during robot-assisted partial nephrectomy[J]. Int J  Comput Assist Radiol Surg, 2015, 10(12): 1905-1913. 

[37] ZHAO Z, CAI T, CHANG F, et al. Real-time surgical  instrument detection in robot-assisted surgery using  a convolutional neural network cascade[J]. Healthc  Technol Lett, 2019, 6(6): 275.  

[38] Zhao Z, Voros S, Weng Y, et al. Tracking-by-detection  of surgical instruments in minimally invasive surgery  via the convolutional neural network deep learningbased method[J]. Comput Assist Surg (Abingdon), 2017,  22(sup1): 26-35. 

[39] CLaina I, Rieke N, Rupprecht C, et al. Concurrent  segmentation and localization for tracking of surgical  instruments[C]// In International conference on medical  image computing and computer-assisted intervention.  Cham, Switzerland: Springer, 2017: 664-672.  

[40] Nwoye C I, Mutter D, Marescaux J, et al. Weakly  supervised convolutional LSTM approach for tool  tracking in laparoscopic videos[J]. Int J Comput Assist  Radiol Surg, 2019, 14(6): 1059-1067. 

[41] Krupa A, Gangloff J, Doignon C, et al. Autonomous 3-D positioning of surgical instruments in robotized  laparoscopic surgery using visual servoing[J]. IEEE  Trans Rob Autom, 2003, 19(5): 842-853. 

[42] Kranzfelder M, Schneider A, Fiolka A, et al. Real-time  instrument detection in minimally invasive surgery  using radiofrequency identification technology[J]. J Surg  Res, 2013, 185(2): 704-710. 

[43] Ha X T, Ourak M, Al-Ahmad O, et al. Robust catheter  tracking by fusing electromagnetic tracking, fiber bragg  grating and sparse fluoroscopic images[J].IEEE Sens J,  2021, 21( 20): 23422-23434. 

[44] Penza V, Ortiz J, Mattos L S, et al. Dense soft tissue 3D  reconstruction refined with super-pixel segmentation  for robotic abdominal surgery[J]. Int J Comput Assist  Radiol Surg, 2016, 11(2): 197-206. [45] Moreira P, Zemiti N, Liu C, et al. Viscoelastic model  based force control for soft tissue interaction and its  application in physiological motion compensation[J].  Comput Methods Programs Biomed, 2014, 116(2): 52- 67. 

[46] Bebek O, Cavusoglu M C. Intelligent control algorithms  for robotic-assisted beating heart surgery[J]. IEEE Trans  Robot, 2007, 23(3): 468-480. 

[47] Kim U, Lee D H, Yoon W J, et al. Force sensor  integrated surgical forceps for minimally invasive  robotic surgery[J]. IEEE Trans Robot, 2015, 31(5):  1214-1224. 

[48] Suzuki H, Masuda H, Hongo K, et al. Development and  testing of force-sensing forceps using FBG for bilateral  micro-operation system[J]. IEEE Robot Autom Lett,  2018, 3(4): 4281-4288. 

[49] Back J, Dasgupta P, Seneviratne L, et al. September.  Feasibility study-novel optical soft tactile array sensing  for minimally invasive surgery[C]// In 2015 IEEE/RSJ  International Conference on Intelligent Robots and  Systems (IROS) . Piscataway: IEEE, 2015: 1528-1533. 

[50] Trejos A L, Jayender J, Perri M T, et al. Robotassisted tactile sensing for minimally invasive tumor  localization[J]. Int J Rob Res, 2009, 28(9): 1118-1133. 

[51] Moccia S, De Momi E, Mattos, et al. Supervised  tissue classification in optical images: towards new  applications of surgical data science[M]. 2018, https: // nearlab.polimi.it/wp-content/uploads/2019/02/thesis_ moccia_compressed.pdf. 

[52] Dell’Oglio P, Meershoek P, Maurer T, et al. A DROPIN gamma probe for robot-assisted radioguided surgery  of lymph nodes during radical prostatectomy[J]. Eur  Urol, 2021, 79(1): 124-132. 

[53] Cheng Z, Dall’Alba D, Foti S, et al. Design and  integration of electrical bio-impedance sensing in  surgical robotic tools for tissue identification and  display[J]. Front Robot AI, 2019. DOI: 10.3389/ frobt.2019.00055. 

[54] Cheng Z Q, Schwaner K L, Dall’Alba D, et al. An  electrical bioimpedance scanning system for subsurface  tissue detection in robot assisted minimally invasive  surgery[J]. IEEE Trans Biomed Eng, 2021. DOI:  10.1109/TBME.2021.3091326. 

[55] Salman H, Ayvali E, Srivatsan R A, et al. Trajectoryoptimized sensing for active search of tissue  abnormalities in robotic surgery[C]// In 2018 IEEE  International Conference on Robotics and Automation  (ICRA) . Piscataway: IEEE, 2018: 5356-5363. 

[56] Garg A, Sen S, Kapadia R, et al. Tumor localization  using automated palpation with gaussian process  adaptive sampling[C]// In 2016 IEEE International  Conference on Automation Science and Engineering  (CASE), Piscataway: IEEE, 2016: 194-200. 

[57] YAN Y, PAN J. Fast Localization and Segmentation  of Tissue Abnormalities by Autonomous Robotic  Palpation[J]. IEEE Robot Autom Lett, 2021, 6(2): 1707- 1714. 

[58] Li Y, Richter F, Lu J, et al. Super: A surgical perception  framework for endoscopic tissue manipulation with  surgical robotics[J]. IEEE Robot Autom Lett, 2020, 5(2):  2294-2301. 

[59] Ren H, Rank D, Merdes M, et al. Multisensor data  fusion in an integrated tracking system for endoscopic  surgery[J]. IEEE Trans Inf Technol Biomed, 2011,  16(1): 106-111. 

[60] Rosen J, Hannaford B, Satava R M. Medical devices:  surgical and image guided technologies[M]. Wiley,  2011: 301-306. 

[61] CHEN Y, WU Z, YANG B, et al. Review of surgical robotic systems for keyhole and endoscopic procedures:  state of the art and perspectives[J]. Front Med, 2020,  14(4): 382-403. 

[62] Simorov A, Otte R S, Kopietz C M, et al. Review of  surgical robotics user interface: what is the best way to  control robotic surgery?[J]. Surg Endosc, 2012, 26(8):  2117-2125. 

[63] ZHAO Y, XING H, GUO S, et al. A novel noncontact  detection method of surgeon’s operation for a masterslave endovascular surgery robot[J]. Med Biol Eng  Comput, 2020, 58(4): 871-885. 

[64] Attanasio A, Scaglioni B, De Momi E, et al. Autonomy  in surgical robotics[J]. Annu Rev Control Robot Auton  Syst, 2020, 4(1): 441-463. 

[65] Ruszkowski A, Mohareri O, Lichtenstein S, et al. On  the feasibility of heart motion compensation on the  daVinci® surgical robot for coronary artery bypass  surgery: Implementation and user studies[C]// In  2015 IEEE International Conference on Robotics and  Automation (ICRA). Piscataway: IEEE, 2015: 4432- 4439. 

[66] Yuen S G, Kettler D T, Novotny P M, et al. Robotic  motion compensation for beating heart intracardiac  surgery[J]. Int J Rob Res, 2009, 28(10): 1355-1372. 

[67] 肖晶晶 , 杨洋 , 沈丽君 , 等 , 视网膜显微手术机器 人的约束运动规划及仿真 [J]. 机器人 , 2018, 40(6):  870-877. 

[68] Fontanelli G A, Yang G Z and Siciliano B. A comparison  of assistive methods for suturing in MIRS[C]// In 2018  IEEE/RSJ International Conference on Intelligent  Robots and Systems (IROS). Piscataway: IEEE, 2018:  4389-4395. 

[69] Azizian M, Khoshnam M, Najmaei N, et al. Visual  servoing in medical robotics: a survey. Part I:  endoscopic and direct vision imaging-techniques and  applications[J]. Int J Med Robot Comp, 2014, 10(3):  263-274. 

[70] Krupa A, Gangloff J, Doignon C, et al. Autonomous  3-D positioning of surgical instruments in robotized  laparoscopic surgery using visual servoing[J]. IEEE  Trans Rob Autom, 2003, 19(5): 842-853. 

[71] Hoeckelmann M, Rudas I J, Fiorini P, et al. Current  capabilities and development potential in surgical  robotics[J]. Int J Adv Robot Syst, 2015, 12(5): 61. 

[72] Münzer B, Schoeffmann K, Böszörmenyi L. Content-based processing and analysis of endoscopic images and  videos: a survey[J]. Multimed Tools Appl, 2018, 77(1):  1323-1362. 

[73] Wei G Q, Arbter K, Hirzinger G. Real-time visual  servoing for laparoscopic surgery. Controlling robot  motion with color image segmentation[J]. IEEE Eng  Med Biol Mag, 1997, 16(1): 40-45. 

[74] Voros S, Long J A, Cinquin P. Automatic detection of  instruments in laparoscopic images: a first step towards  high-level command of robotic endoscopic holders[J].  Int J Rob Res, 2007, 26(11-12): 1173-1190. 

[75] Pezzementi Z, Voros S, Hager G D. Articulated object  tracking by rendering consistent appearance parts[C]//  In 2009 IEEE International Conference on Robotics and  Automation. Piscataway: IEEE, 2009: 3940-3947. 

[76] Nageotte F, Zanne P, Doignon C, et al. Visual  servoing-based endoscopic path following for robotassisted laparoscopic surgery[C]// In 2006 IEEE/RSJ  International Conference on Intelligent Robots and  Systems. Piscataway: IEEE, 2006: 2364-2369. 

[77] Frangi A F, Schnabel J A, Davatzikos C, et al. Medical  image computing and computer assisted interventionMICCAI 2018[M]. Cham, Switzerland: Springer, 2018.  DOI: 10.1007/978-3-030-00931-1. 

[78] Ye M L, Zhang L, Giannarou S, et al. Real-time 3d  tracking of articulated tools for robotic surgery[C]//  In International Conference on Medical Image  Computing and Computer-Assisted Intervention. Cham,  Switzerland: Springer, 2016: 386-394. 

[79] Wolf R, Duchateau J, Cinquin P, et al. 3D tracking of  laparoscopic instruments using statistical and geometric  modeling[C]// In International Conference on Medical  Image Computing and Computer-Assisted Intervention.  Berlin, Heidelberg: Springer, 2011: 203-210. 

[80] Allan M, Ourselin S, Thompson S, et al. Toward  detection and localization of instruments in minimally  invasive surgery[J]. IEEE Trans Biomed Eng, 2012,  60(4): 1050-1058. 

[81] Reiter A, Allen P K, Zhao T. Appearance learning for 3D tracking of robotic surgical tools[J]. Int J Rob Res,  2014, 33(2): 342-356. 

[82] Reiter A, Goldman R E, Bajo A, et al. A learning  algorithm for visual pose estimation of continuum  robots[C]// In 2011 IEEE/RSJ International Conference  on Intelligent Robots and Systems. Piscataway: IEEE,  2011: 2390-2396. 

[83] Garcia-Peraza-Herrera L C, Li W, Fidon L, et al. Toolnet:  holistically-nested real-time segmentation of robotic  surgical tools[C]// In 2017 IEEE/RSJ International  Conference on Intelligent Robots and Systems (IROS).  Piscataway: IEEE, 2017: 5717-5722. 

[84] Shvets A A, Rakhlin A, Kalinin A A, et al. Automatic  instrument segmentation in robot-assisted surgery using  deep learning[C]// In 2018 17th IEEE International  Conference on Machine Learning and Applications  (ICMLA). Piscataway: IEEE, 2018: 624-628. 

[85] Shademan A, Decker R S, Opfermann J D, et al.  Supervised autonomous robotic soft tissue surgery[J]. Sci  Transl Med, 2016. DOI: 10.1126/scitranslmed.aad9398. 

[86] Nakamoto M, Ukimura O, Gill I S, et al. Realtime organ  tracking for endoscopic augmented reality visualization  using miniature wireless magnetic tracker[C]// In  International Workshop on Medical Imaging and Virtual  Reality. Berlin, Heidelberg: Springer, 2008: 359-366. 

[87] Nosrati M S, Peyrat J M, Abinahed J, et al. Efficient  multi-organ segmentation in multi-view endoscopic  videos using pre-operative priors[C]// In International  Conference on Medical Image Computing and  Computer-Assisted Intervention. Cham, Switzerland:  Springer, 2014: 324-331. 

[88] Bilodeau G A, Shu Y, Cheriet F. Multistage graph-based  segmentation of thoracoscopic images[J]. Comput Med  Imaging Graph, 2006, 30(8): 437-446. 

[89] Tjoa M P, Krishnan S M, Kugean C, et al. Segmentation  of clinical endoscopic image based on homogeneity  and hue[C]// In 2001 Conference Proceedings of  the 23rd Annual International Conference of the  IEEE Engineering in Medicine and Biology Society.  Piscataway: IEEE, 2001, 3: 2665-2668. 

[90] Figueiredo I N, Moreno J C, Prasath V S, et al. A  segmentation model and application to endoscopic  images[C]// In International Conference Image Analysis  and Recognition. Berlin, Heidelberg: Springer, 2012:  164-171. 

[91] Wu S Q, Nakao M, Matsuda T. Continuous lung region  segmentation from endoscopic images for intra-operative  navigation[J]. Comput Biol Med, 2017. DOI: 10.1016/ j.compbiomed.2017.05.029. 

[92] Bodenstedt S, Wagner M, Mayer B, et al. Image-based  laparoscopic bowel measurement[J]. Int J Comput Assist  Radiol Surg, 2016, 11(3): 407-419. 

[93] Chhatkuli A, Bartoli A, Malti A, et al. Live image  parsing in uterine laparoscopy[C]// In 2014 IEEE 11th  international symposium on biomedical imaging (ISBI).  Piscataway: IEEE, 2014: 1263-1266. 

[94] Moccia S, Foti S, Rossi S M, et al. FCNN-based  segmentation of kidney vessels-Towards constraints  definition for safe robot-assisted nephrectomy[C]// In  Joint Workshop on New Technologies for Computer/ Robot Assisted Surgery. 2018: 1-2.  

[95] Rosen J, Hannaford B, Richards C G, et al. Markov  modeling of minimally invasive surgery based on tool/ tissue interaction and force/torque signatures for  evaluating surgical skills[J]. IEEE Trans Biomed Eng,  2001, 48(5): 579-591. 

[96] Lin H C, Shafran I, Yuh D, et al. Towards automatic  skill evaluation: detection and segmentation of robotassisted surgical motions[J]. Comput Aided Surg, 2006,  11(5): 220-230. 

[97] Padoy N, Blum T, Ahmadi S A, et al. Statistical  modeling and recognition of surgical workflow[J]. Med  Image Ana, 2012, 16(3): 632-641. 

[98] Ahmidi N, Tao L, Sefati S, et al. A dataset and  benchmarks for segmentation and recognition of  gestures in robotic surgery[J]. IEEE Trans Biomed Eng,  2017, 64(9): 2025-2041. 

[99] Tao L, Elhamifar E, Khudanpur S, et al. Sparse hidden  markov models for surgical gesture classification  and skill evaluation[C]// In International conference  on information processing in computer-assisted  interventions. Heidelberg, Berlin: Springer, 2012: 167- 177. 

[100] Zappella L, Béjar B, Hager G, et al. Surgical gesture classification from video and kinematic data[J]. Med  Image Ana, 2013, 17(7): 732-745. 

[101] Despinoy F, Bouget D, Forestier G, et al. Unsupervised  trajectory segmentation for surgical gesture recognition  in robotic training[J].IEEE Trans Biomed Eng, 2015,  63(6): 1280-1291. 

[102] Murali A, Garg A, Krishnan S, et al. Tsc-dl: Unsupervised  trajectory segmentation of multi-modal surgical  demonstrations with deep learning[C]// In 2016 IEEE  International Conference on Robotics and Automation  (ICRA). Piscataway: IEEE, 2016: 4150-4157. 

[103] Krishnan S, Garg A, Patil S, et al. Transition  state clustering: unsupervised surgical trajectory  segmentation for robot learning[J]. Int J Rob Res, 2017,  36(13-14): 1595-1618. 

[104] Kang H, Wen J T. Endobot: a robotic assistant in  minimally invasive surgeries[C]// In Proceedings 2001  ICRA. IEEE International Conference on Robotics and  Automation (Cat. No. 01CH37164). Piscataway: IEEE,  2001, 2: 2031-2036.  

[105] Nageotte F, Zanne P, Doignon C, et al. Stitching  planning in laparoscopic surgery: towards robot-assisted  suturing[J]. Int J Med Robot, 2009, 28(10): 1303-1321. 

[106] Jackson R C, Çavuşoğlu M C. Needle path planning for  autonomous robotic surgical suturing[C]// In 2013 IEEE  International Conference on Robotics and Automation.  Piscataway: IEEE, 2013: 1669-1675. 

[107] Sen S, Garg A, Gealy D V, et al. Automating multithrow multilateral surgical suturing with a mechanical  needle guide and sequential convex optimization[C]//  In 2016 IEEE international conference on robotics and  automation (ICRA). Piscataway: IEEE, 2016: 4178- 4185. 

[108] Staub C, Osa T, Knoll A, et al. Automation of tissue  piercing using circular needles and vision guidance for  computer aided laparoscopic surgery[C]// In 2010 IEEE  International Conference on Robotics and Automation.  Piscataway: IEEE, 2010: 4585-4590. 

[109] Leonard S, Wu K L, Kim Y, et al. Smart tissue  anastomosis robot (STAR): a vision-guided robotics  system for laparoscopic suturing[J]. IEEE Trans Biomed  Eng, 2014, 61(4): 1305-1317. 

[110] ZHONG F X, WANG Y Q, WANG Z R, et al. Dual-arm  robotic needle insertion with active tissue deformation  for autonomous suturing[J]. IEEE Robot Autom Lett,  2019, 4(3): 2669-2676. 

[111] Mayer H, Gomez F, Wierstra D, et al. A system for  robotic heart surgery that learns to tie knots using  recurrent neural networks[J]. Adv Robotics, 2008,  22(13-14): 1521-1537. 

[112] Mayer H, Nagy I, Burschka D, et al. Automation of  manual tasks for minimally invasive surgery[C]// In  Fourth International Conference on Autonomic and  Autonomous Systems (ICAS’08). Piscataway: IEEE,  2008: 260-265. 

[113] Van Den Berg J, Miller S, Duckworth D, et al.  Superhuman performance of surgical tasks by  robots using iterative learning from human-guided  demonstrations[C]// In 2010 IEEE International  Conference on Robotics and Automation. Piscataway:  IEEE, 2010: 2074-2081.  

[114] Schulman J, Gupta A, Venkatesan S, et al. A case study  of trajectory transfer through non-rigid registration for  a simplified suturing scenario[C]// In 2013 IEEE/RSJ  International Conference on Intelligent Robots and  Systems. Piscataway: IEEE, 2013: 4111-4117. 

[115] Kehoe B, Kahn G, Mahler J, et al. Autonomous  multilateral debridement with the raven surgical  robot[C]// In 2014 IEEE International Conference on  Robotics and Automation (ICRA). Piscataway: IEEE,  2014: 1432-1439. 

[116] Le H N, Opfermann J D, Kam M, et al. Semi-autonomous laparoscopic robotic electro-surgery with  a novel 3D endoscope[C]// In 2018 IEEE International  Conference on Robotics and Automation (ICRA).  Piscataway: IEEE, 2018: 6637-6644. 

[117] Nichols K A, Okamura A M. Autonomous robotic  palpation: Machine learning techniques to identify  hard inclusions in soft tissues[C]// In 2013 IEEE  International Conference on Robotics and Automation.  Piscataway: IEEE, 2013: 4384-4389.  

[118] Nagy D Á, Nagy T D, Elek R, et al. Ontology-based  surgical subtask automation, automating blunt  dissection[J]. J Med Robot Res, 2018. DOI: 10.1142/ S2424905X18410052. 

[119] Marbán A, Casals A, Fernández J, et al. Haptic feedback in surgical robotics: Still a challenge[C]// In  ROBOT2013: First Iberian Robotics Conference. Cham,  Switzerland: Springer. 2014: 245-253. 

[120] Van den Dobbelsteen J J, Lee R A, van Noorden M, et al.  Indirect measurement of pinch and pull forces at the  shaft of laparoscopic graspers[J]. Med Biol Eng Comput,  2012, 50(3): 215-221. 

[121] Wu D, Zhang Y, Ourak M, et al. Hysteresis modeling  of robotic catheters based on long short-term memory  network for improved environment reconstruction[J].  IEEE Robot Autom Lett, 2021, 6(2): 2106-2113. 

[122] Aviles A I, Casals A. On genetic algorithms optimization  for heart motion compensation[C]// In ROBOT2013:  First Iberian Robotics Conference. Cham, Switzerland:  Springer. 2014, 252: 237-244. 

[123] Francis P, Eastwood K W, Bodani V, et al. Miniaturized  instruments for the da Vinci research kit: design and  implementation of custom continuum tools[J]. IEEE  Robot Autom Mag, 2017, 24(2): 24-33. [124] Wu D, Li G, Patel N, et al. Remotely actuated  needle driving device for mri-guided percutaneous  interventions[C]// In 2019 International Symposium on  Medical Robotics (ISMR) . Piscataway: IEEE, 2019: 1-7. 

[125] Ha X T, Ourak M, Al-Ahmad O, et al. Robust catheter  tracking by fusing electromagnetic tracking, fiber bragg  grating and sparse fluoroscopic images[J]. IEEE Sens J,  2021, 21(20): 23422-23434. 

[126] Graur F, Frunza M, Elisei R, et al. Ethics in Robotic  Surgery and Telemedicine[C]// Pisla D, Ceccarelli M,  Husty M, et al. In New Trends in Mechanism Science.  Berlin: Springer, 2010: 457-465.  

[127] O’Sullivan S, Nevejans N, Allen C, et al. Legal,  regulatory, and ethical frameworks for development of  standards in artificial intelligence (AI) and autonomous  robotic surgery[J]. Int J Med Robot Comp, 2019, 15(1):  e1968. 

[128] YANG C, GUO S X, BAO X Q, et al. A vascular  interventional surgical robot based on surgeon’s  operating skills[J]. Med Biol Eng Comput, 2019, 57(9):  1999-2010. 

[129] Su H, Mariani A, Ovur S E, et al. Toward teaching by  demonstration for robot-assisted minimally invasive  surgery[J]. IEEE Trans Autom Sci Eng, 2021, 18(2):  484-494. 

[130] GUO S X, WANG Y X, ZHAO Y, et al. A surgeon’s  operating skills-based non-interference operation  detection method for novel vascular interventional  surgery robot systems[J]. IEEE Sens J, 2019, 20(7):  3879-3891. 

[131] Shafiei S B, Hussein A A, Guru K A. Cognitive learning  and its future in urology: surgical skills teaching and  assessment[J]. Curr Opin Urol, 2017, 27(4): 342-347. 

[132] Kinross J M, Mason S E, Mylonas G, et al. Nextgeneration robotics in gastrointestinal surgery[J]. Nat  Rev Gastroenterol Hepatol, 2020, 17(7): 430-440. 

[133] De Rossi G, Minelli M, Sozzi A, et al. Cognitive  robotic architecture for semi-autonomous execution  of manipulation tasks in a surgical environment[C]//  In 2019 IEEE/RSJ International Conference on  Intelligent Robots and Systems (IROS). Piscataway:  IEEE, 2019: 7827-7833.

印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈