中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

用于治疗和诊断的核磁共振兼容手术机器人系统的发展现状

A survey on MR-compatible surgical robots for treatment and diagnosis

作者:吴迪,周兵,肖霄,肖博,郭靖,何昭水

Vol. 4 No. 4 Aug. 2023 DOI: 10.12180/j.issn.2096-7721.2023.04.002 发布日期:2023-10-19
关键词:MRI 引导下介入;MR 兼容;医疗机器人

作者简介:

核磁共振成像(Magnetic Resonance Imaging,MRI)通过高分辨率目标组织扫描,可以使医生和患者 在免于电离辐射的情况下实现实时成像。近年来,科学家和工程师们一直尝试将机器人技术与 MRI 结合在一起,实 现机器人辅助和图像引导相结合的诊断及治疗。本文介绍了可用于术中 MRI 的医疗机器人系统,具体包括它们的成 像兼容性、驱动方式、传感方式、运动学以及机械和电气设计,这些技术使得机器人在 MRI 引导下的介入诊疗成为 可能,此外,基于不同的医学场景,本文对各种 MR 兼容机器人系统做了分类和比较研究,最后对 MR 兼容机器人 领域的未来发展方向进行了展望。

Magnetic resonance imaging (MRI) is able to scan target tissues with high resolution, and allows clinicians  as well as patients to be free from ionizing radiation. MRI enables real-time imaging of patients. In recent years, scientists  and engineers have been trying to combine robotic technology with MRI to achieve robot-assisted and image-guided diagnosis  and treatment. Medical robotic systems that could be used in intraoperative MRI were introduced in this survey, their MR  compatibility, actuation, sensing, kinematics, and electro-mechanical designs were specially summarized and discussed. These  robots make interventions under the guidance of MRI possible. In addition, based on various clinical scenarios, MR-compatible  robotic systems are classified and comparatively studied. Finally, we conclude the survey with an outlook on the future research  directions of the MR-compatible robotics.

稿件信息

收稿日期:2021-12-07  录用日期:2022-06-16 

Received Date: 2021-12-07  Accepted Date: 2022-06-16 

基金项目:国家自然科学基金青年项目(61803103) 

Foundation Item: National Natural Science Foundation of China (61803103) 

通讯作者:郭靖,Email:toguojing@gmail.com 

Corresponding Author: GUO Jing, Email: toguojing@gmail.com 

引用格式:吴迪,周兵,肖霄,等 . 用于治疗和诊断的核磁共振兼容手术机器人系统的发展现状 [J]. 机器人外科学杂志(中英文), 2023,4(4):299-319. 

Citation: WU D, ZHOU B, XIAO X, et al. A survey on MR-compatible surgical robots for treatment and diagnosis [J]. Chinese Journal of Robotic Surgery, 2023, 4 (4): 299-319. 

注:吴迪,原单位为德国慕尼黑工业大学机械工程学院,现单位为比利时鲁汶大学机械工程系

参考文献

[1] Shellock F G, Woods T O, Crues J V 3rd. MR labeling  information for implants and devices: explanation of  terminology[J]. Radiology, 2009, 253(1): 26-30.

[2] Davies B. A review of robotics in surgery[J]. Proceedings  of the Institution of Mechanical Engineers, Part H:  Journal of Engineering in Medicine, 2000, 214(1): 129- 140. 

[3] Dogangil G, Davies B L, Baena F R Y. A review of  medical robotics for minimally invasive soft tissue  surgery[J]. Proceedings of the Institution of Mechanical  Engineers, Part H: Journal of Engineering in Medicine,  2010, 224(5): 653-679. 

[4] Masamune K, Kobayashi E, Masutani Y, et al.  Development of an MRI-compatible needle insertion  manipulator for stereotactic neurosurgery[J]. J Image  Guid Surg, 1995, 1(4): 242-248. 

[5] Chinzei K, Kikinis R, Jolesz F A. MR compatibility of  mechatronic devices: design criteria[C]. International  Conference on Medical Image Computing and  Computer-Assisted Intervention. Berlin, Heidelberg:  Springer, 1999: 1020-1030. 

[6] Chinzei K, Hata N, Jolesz F A, et al. Surgical assist  robot for the active navigation in the intraoperative MRI:  Hardware design issues[C]. Proceedings. 2000 IEEE/ RSJ International Conference on Intelligent Robots and  Systems (IROS 2000). Takamatsu, Japan: IEEE, 2000:  727-732. 

[7] Gassert R, Burdet E, Chinzei K. MRI-compatible  robotics[J]. IEEE Eng Med Biol Mag, 2008, 27 (3): 12- 14. 

[8] Hempel E, Fischer H, Gumb L, et al. An MRI-compatible  surgical robot for precise radiological interventions[J].  Comput Aided Surg, 2003, 8 (4): 180-191. 

[9] Hidler J, Hodics T, Xu B, et al. MR compatible force  sensing system for real-time monitoring of wrist  moments during fMRI testing[J]. J Neurosci Methods,  2006, 155 (2): 300-307. 

[10] Riener R, Villgrattner T, Kleiser R, et al. fMRIcompatible electromagnetic haptic interface[C]. 2005  IEEE Engineering in Medicine and Biology 27th  Annual Conference. Shanghai, China: IEEE, 2006:  7024-7027. 

[11] Burdet E, Gassert R, Gowrishankar G, et al. fMRI  compatible haptic interfaces to investigate human  motor control[C]. Experimental robotics IX. Berlin,  Heidelberg, Springer, 2006: 21, 25-34. 

[12] Krieger A, Susil R C, Menard C, et al. Design of a  novel MRI compatible manipulator for image guided  prostate interventions[J]. IEEE Trans Biomed Eng,  2005, 52(2): 306-313. 

[13] Sutherland G R, McBeth P B, Louw D F. NeuroArm:  an MR compatible robot for microsurgery[J].  International congress series, 2003. DOI: 10.1016/ S0531-5131(03)00439-4. 

[14] Tse Z T H, Janssen H, Hamed A, et al. Magnetic  resonance elastography hardware design: a survey[J].  Proc Inst Mech Eng H, 2009, 223(4): 497-514. 

[15] Mathier J B, Martel S. Magnetic microparticle steering  within the constraints of an MRI system: proof of  concept of a novel targeting approach[J]. Biomed  Microdevices, 2007, 9 (6): 801-808. 

[16] Roberts T P L, Hassenzahl W V, Hetts S W, et  al. Remote control of catheter tip deflection: an  opportunity for interventional MRI[J]. Magn Reson  Med, 2002, 48 (6): 1091-1095. 

[17] XIAO Q Y, Monfaredi R, Musa M, et al. MRconditional actuations: a review[J]. Annals of  Biomedical Engineering, 2020, 48(12): 2707-2733. 

[18] Larson B T, Erdman A G, Tsekos M K, et al. “Design  of an MRI-compatible robotic stereotactic device for  minimally invasive interventions in the breast[J]. J  Biomech Eng, 2004, 126 (4): 458-465. 

[19] Harada K, Tsubouchi K, Fujie M G, et al. Micro  manipulators for intrauterine fetal surgery in an open  MRI[C]. Proceedings of the 2005 IEEE International  Conference on Robotics and Automation (ICRA).  Barcelona, Spain: IEEE, 2005. 

[20] Hata N, Hashimoto R, Tokuda J, et al. Needle guiding  robot for MR-guided microwave thermotherapy  of liver tumor using motorized remote-center-ofmotion constraint[C]. Proceedings of the 2005 IEEE  International Conference on Robotics and Automation.  Barcelona, Spain: IEEE, 2005: 1652-1656. 

[21] Briggs R W, Dy-Liacco L, Malcolm M P, et al. A  pneumatic vibrotactile stimulation device for fMRI[J].  Magn Reson Med, 2004, 51 (3): 640-643. 

[22] Zappe A C, Maucher T, Meier K, et al. Evaluation  of a pneumatically driven tactile stimulator device  for vision substitution during fMRI studies[J]. Magn  Reson Med, 2004, 51(4): 828-834. 

[23] Golaszewski S M, Zschiegner F, Siedentopf C M, et  al. A new pneumatic vibrator for functional magnetic  resonance imaging of the human sensorimotor  cortex[J]. Neurosci Lett, 2002, 324 (2): 125-128. 

[24] Chen Y, Godage I S, Tse Z, et al. Characterization  and control of a pneumatic motor for MR-conditional  robotic applications[J]. IEEE/ASME Transactions on  Mechatronics, 2017, 22(6): 2780-2789. 

[25] Musa M, Sengupta S, Chen Y. Design of a 6 DoF  parallel robot for MRI-guided interventions[C]. In  IEEE, 2021 International Symposium on Medical  Robotics (ISMR), Atlanta, GA, USA: IEEE, 2021: 1-7. [26] Groenhuis V, Siepel F J, Stramigioli S. Miniaturization  of MR safe pneumatic rotational stepper motors[C].  2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China:  IEEE, 2019. 

[27] Farimani F S, Misra S. Introducing PneuAct:  parametrically-designed MRI-Compatible pneumatic  stepper actuator[C]. 2018 IEEE International  Conference on Robotics and Automation (ICRA).  Brisbane, QLD, Australia: IEEE, 2018. 

[28] Taillant E, Avila-Vilchis J C, Allegrini C, et al. CT  and MR compatible light puncture robot: architectural  design and first experiments[C]. International  Conference on Medical Image Computing and  Computer-Assisted Intervention. Berlin, Heidelberg:  Springer, 2004. 

[29] Stoianovici D. Multi-imager compatible actuation  principles in surgical robotics[J]. Int J Med Robot,  2005, 1(2): 86-100. 

[30] DiMaio S P, Fischer G S, Haker S J, et al. A system for  MRI-guided prostate interventions[C]. The First IEEE/ RAS-EMBS International Conference on Biomedical  Robotics and Biomechatronics, 2006. Pisa, Italy:  IEEE, 2006: 68-73. 

[31] Dong Z Y, Guo Z Y, Lee Kit-Hang, et al. Highperformance continuous hydraulic motor for MR safe  robotic teleoperation[J]. IEEE Robot Autom Lett,  2019, 4 (2): 1964-1971. 

[32] Bishop J, Poole G, Leitch M, et al. Magnetic resonance  imaging of shear wave propagation in excised tissue[J].  J Magn Reson Imaging, 1998, 8 (6): 1257-1265. 

[33] Juergen B, Braun K, Sack I. Electromagnetic actuator  for generating variably oriented shear waves in MR  elastography[J]. Magn Reson Med, 2003, 50 (1): 220- 222. 

[34] Rossman P J, Muthupillai R, Richard L. Ehman.  Driver device for MR elastography[P]. U.S. Patent No.  5, 952, 828. 14 Sep. 1999. 

[35] Li G, Patel N A, Liu W Q, et al. A fully actuated bodymounted robotic assistant for mri-guided low back  pain injection[C]. 2020 IEEE International Conference  on Robotics and Automation (ICRA). Paris, France:  IEEE, 2020: 5495-5501. 

[36] Wu D, Li G, Patel N, et al. Remotely actuated  needle driving device for mri-guided percutaneous  interventions[C]. 2019 International Symposium on  Medical Robotics (ISMR). Atlanta, GA, USA: IEEE,  2019: 1-7. 

[37] Ganesh G, Gassert R, Burdet E, et al. Dynamics and  control of an MRI compatible master-slave system  with hydrostatic transmission[C]. IEEE International  Conference on Robotics and Automation, 2004. New  Orleans, LA, USA: IEEE, 2004, 2: 1288-1294. 

[38] Vogan J, Wingert A, Plante J S, et al. Manipulation in  MRI devices using electrostrictive polymer actuators:  with an application to reconfigurable imaging coils[C].  IEEE International Conference on Robotics and  Automation, 2004. New Orleans, LA, USA: IEEE,  2004, 3: 2498-2504. 

[39] Khanicheh A, Muto A, Triantafyllou C, et al. MR  compatible ERF driven hand rehabilitation device[C].  9th International Conference on Rehabilitation  Robotics, 2005. Chicago, IL, USA: IEEE, 2005: 7-12. [40] Chapuis D, Gassert R, Burdet E, et al. Hybrid  ultrasonic motor and electrorheological clutch system  for MR-compatible haptic rendering[C]. 2006 IEEE/ RSJ International Conference on Intelligent Robots  and Systems. Beijing, China: IEEE, 2006: 1553-1557. 

[41] Hribar A, Munih M. Development and testing of fMRIcompatible haptic interface[J]. Robotica, 2010, 28(2):  259-265. 

[42] Li S, Frisoli A, Borelli L, et al. Design of a new  fMRI compatible haptic interface[C]. World  Haptics 2009-Third Joint EuroHaptics conference  and Symposium on Haptic Interfaces for Virtual  Environment and Teleoperator Systems. Salt Lake  City, UT, USA: IEEE, 2009: 535-540. 

[43] Gassert R, Moser R, Burdet E, et al. MRI/fMRIcompatible robotic system with force feedback for  interaction with human motion[J]. IEEE ASME Trans  Mechatron, 2006, 11(2): 216-224. 

[44] Tada M, Shinsuke S, Tsukasa O. Development  of an optical 2-axis force sensor usable in MRI  environments[C]. SENSORS, 2002 IEEE. Orlando,  FL, USA: IEEE, 2002, 2: 984-989. 

[45] Chapuis D, Gassert R, Sache L, et al. Design of a  simple MRI/fMRI compatible force/torque sensor[C].  2004 IEEE/RSJ International Conference on  Intelligent Robots and Systems (IROS). Sendai, Japan:  IEEE, 2004, 3: 2593-2599. 

[46] Frishman S, Kight A, Pirozzi L, et al. Enabling inbore mri-guided biopsies with force feedback[J]. IEEE  Trans Haptics, 2020, 13(1): 159-166. 

[47] Li G, Su H, Cole G A, et al. Robotic system for MRIguided stereotactic neurosurgery[J]. IEEE Trans  Biomed Eng, 2015, 62(4): 1077-1088. 

[48] Hata N, Tokuda J, Hurwitz S, et al. MRI-compatible  manipulator with remote-center-of-motion control[J]. J  Magn Reson Imaging, 2008, 27(5): 1130-1138. 

[49] Hushek S G, Fetics B, Moser R M, et al. Initial clinical  experience with a passive electromagnetic 3D locator  system[C]. 5th Interventional MRI Symposium, 2004,  No. 605. 

[50] Chen Y, Wang W, Schmidt E J, et al. Design  and fabrication of MR-tracked metallic stylet for  gynecologic brachytherapy[J]. IEEE ASME Trans  Mechatron, 2015, 21(2): 956-962. 

[51] Wang W, Viswanathan A N, Damato A L, et al.  Evaluation of an active magnetic resonance tracking  system for interstitial brachytherapy[J]. Medical  physics, 2015, 42 (12): 7114-7121. 

[52] Chen Y, Tse Z T, Wang W, et al. Intra-cardiac MR  imaging & MR-tracking catheter for improved MRguided EP[J]. J Cardiovasc Magn Reson, 2015, 17 (1):  1-2. 

[53] Norberg M, Egevad L, Holmberg L, et al. The sextant  protocol for ultrasound-guided core biopsies of the  prostate underestimates the presence of cancer[J].  Urology, 1997, 50 (4): 562-566. 

[54] D’amico A V, Tempany C M, Cormack R, et al.  Transperineal magnetic resonance image guided  prostate biopsy[J]. J Urol, 2000, 164 (2): 385-387. 

[55] Stone N N, Roy J, Hong S, et al. Prostate gland motion  and deformation caused by needle placement during  brachytherapy[J]. Brachytherapy, 2002, 1 (3): 154- 160. 

[56] Fischer G S, Lordachita L, Csoma C, et al. MRIcompatible pneumatic robot for transperineal prostate  needle placement[J]. IEEE ASME Trans Mechatron,  2008, 13(3): 295-305. 

[57] Elhawary H, Zivanovic A, Rea M, et al. A modular  approach to MRI-compatible robotics[J]. IEEE Eng  Med Biol Mag, 2008, 27(3): 35-41. 

[58] Stoianovici D, Song D, Petrisor D, et al. “MRI  Stealth” robot for prostate interventions[J]. Minim  Invasive Ther Allied Technol, 2007, 16(4): 241-248. 

[59] Song S E, Cho N B, Fischer G, et al. Development of a  pneumatic robot for MRI-guided transperineal prostate  biopsy and brachytherapy: new approaches[C]. 2010  IEEE International Conference on Robotics and  Automation. Anchorage, AK, USA: IEEE, 2010:  2580-2585. 

[60] Dirk B, Winkel A, Hamm B, et al. MR imaging-guided  prostate biopsy with a closed MR unit at 1.5 T: initial  results[J]. Radiology, 2005, 234(2): 576-581. 

[61] Moreira P, Boskma K J, Misra S. Towards MRI-guided  flexible needle steering using fiber Bragg gratingbased tip tracking[C]. 2017 IEEE International  Conference on Robotics and Automation (ICRA).  Singapore: IEEE, 2017: 4849-4854. 

[62] Chen L, Paetz T, Dicken V, et al. Design of a  dedicated five degree-of-freedom magnetic resonance  imaging compatible robot for image guided prostate  biopsy [J]. Journal of Medical Devices, 2015, 9(1):  015002 

[63] Thomas S, Puccini S, Schneider Jens-Peter, et al.  Interventional and intraoperative MR: review and  update of techniques and clinical experience[J]. Eur  Radiol, 2004, 14 (12): 2212-2227. 

[64] Bricault I, Zemiti N, Jouniaux E, et al. Light puncture  robot for CT and MRI interventions[J]. IEEE Eng Med  Biol Mag, 2008, 27(3): 42-50. 

[65] Melzer A, Gutmann B, Lukoschek A, et al.  Experimental evaluation of an MRI compatible  telerobotic system for CT MRI guided interventions[J].  Supplement to Radiology, 2003, 226: 409-444. 

[66] HE Z L, DONG Z Y, FANG G, et al. Design of a  percutaneous MRI-guided needle robot with soft fluiddriven actuator[J]. IEEE Robot Autom Lett, 2020,  5(2): 2100-2107. 

[67] Kim G H, Patel N, Yan J, et al. Shoulder-mounted  robot for MRI-guided arthrography: clinically  optimized system[C]. In 2019 41st Annual  International Conference of the IEEE Engineering  in Medicine and Biology Society (EMBC), Berlin,  Germany: IEEE, 2019: 1977-1980. 

[68] Patel N A, Yan J W, Levi D, et al. Body-mounted  robot for image-guided percutaneous interventions:  mechanical design and preliminary accuracy  evaluation[C]. 2018 IEEE/RSJ International  Conference on Intelligent Robots and Systems (IROS).  Madrid, Spain: IEEE, 2018: 1443-1448. 

[69] Yan J W, Patel N, Li G, et al. Body-mounted  MRI-conditional parallel robot for percutaneous  interventions structural improvement, calibration,  and accuracy analysis[C]. In 2019 41st Annual  International Conference of the IEEE Engineering in  Medicine and Biology Society (EMBC), 2019: 1990- 1993. 

[70] Li G, Patel N A, Sharma K, et al. Body-mounted  robotics for interventional MRI procedures[J]. IEEE  Trans Med Robot Bionics, Berlin, Germany: IEEE,  2020, 2(4): 557-560. 

[71] Li G, Patel N A, Wang Y Z, et al. Fully actuated bodymounted robotic system for MRI-guided lower back  pain injections: Initial phantom and cadaver studies[J].  IEEE Robot Autom Lett, 2020, 5(4): 5245-5251. 

[72] Li G, Patel N A, Hagemeister J, et al. Body-mounted  robotic assistant for MRI-guided low back pain  injection[J]. International Journal of Computer  Assisted Radiology and Surgery, 2020, 15(2): 321- 331. 

[73] Wu D, Li G, Patel N, et al. Remotely actuated  needle driving device for MRI-guided percutaneous  interventions: force and accuracy evaluation[C]. In  2019 41st Annual International Conference of the  IEEE Engineering in Medicine and Biology Society  (EMBC), Berlin, Germany: IEEE, 2019: 1985-1989. 

[74] Morikawa S, Naka S, Murakami K, et al. Preliminary  clinical experiences of a motorized manipulator  for magnetic resonance image-guided microwave coagulation therapy of liver tumors[J]. Ame J Surg,  2009, 198(3): 340-347. 

[75] Hata N, Ohara F, Hashimoto R, et al. Needle  guiding robot with five-bar linkage for MR-guided  thermotherapy of liver tumor[C]. International  Conference on Medical Image Computing and  Computer-Assisted Intervention. Berlin, Heidelberg:  Springer, 2004: 161-168. 

[76] Miyata N, Kobayashi E, Kim D, et al. Micro-grasping  forceps manipulator for MR-guided neurosurgery[C].  International Conference on Medical Image Computing  and Computer-Assisted Intervention. Berlin,  Heidelberg: Springer, 2002: 107-113. 

[77] Hashizume M, Yasunaga T, Tanoue K, et al. New realtime MR image-guided surgical robotic system for  minimally invasive precision surgery[J]. Int J CARS,  2008, 2(6): 317-325. 

[78] Sato I, Ryoichi N, Ken M. MRI compatible  manipulator with MRI-guided needle insertion support  system[C]. 2010 International Symposium on MicroNanoMechatronics and Human Science. Nagoya,  Japan: IEEE, 2010: 77-82. 

[79] Franco E, Brujic D, Rea M, et al. Needle-guiding  robot for laser ablation of liver tumors under MRI  guidance[J]. IEEE ASME Trans Mechatron, 2015,  21(2): 931-944. 

[80] Kokes R, Lister K, Gullapalli R, et al. Towards a  teleoperated needle driver robot with haptic feedback  for RFA of breast tumors under continuous MRI[J].  Med Image Anal, 2009, 13(3): 445-455. 

[81] Yang B, Tan U, McMillan A, et al. Design and  implementation of a pneumatically-actuated robot for  breast biopsy under continuous MRI[C]. 2011 IEEE  International Conference on Robotics and Automation  (ICRA). Shanghai, China: IEEE, 2011: 674-679. 

[82] ZHANG T X, WEN Y S, LIU Y H. Developing a  parallel robot for MRI-guided breast intervention[J].  IEEE Trans Med Robot Bionics, 2019, 2(1): 17-27. 

[83] Groenhuis V, Siepel F J, Veltman J, et al. Design and  characterization of Stormram 4: an MRI-compatible  robotic system for breast biopsy[C]. 2017 IEEE/RSJ  International Conference on Intelligent Robots and  Systems (IROS). Vancouver, BC, Canada: IEEE, 2017:  928-933. 

[84] Navarro-Alarcon D, Satwinder S, Tianxue Z, et al.  Developing a compact robotic needle driver for MRIguided breast biopsy in tight environments[J]. IEEE  Robot Autom Lett, 2017, 2(3): 1648-1655. [85] Chen Y, Godage I, Su H, et al. Stereotactic systems  for MRI-guided neurosurgeries: a state-of-the-art  review[C]. Annals of Biomedical Engineering, 2019,  47(2): 335-353. 

[86] Koseki Y, Toshikatsu Washio T, Chinzei K, et al.  Endoscope manipulator for trans-nasal neurosurgery,  optimized for and compatible to vertical field open  MRI[C]. International Conference on Medical Image  Computing and Computer-Assisted Intervention.  Berlin, Heidelberg: Springer, 2002, 2488: 114-121. 

[87] YUN C, HONG Z D, ZHAO L, et al. Design and  optimization analysis of open-MRI compatibile  robot for neurosurgery[C]. 2008 2nd International  Conference on Bioinformatics and Biomedical  Engineering. Shanghai, China: IEEE, 2008: 1773- 1776. 

[88] Raoufi C, Ben-Tzvi P, Goldenberg A A, et al. A  MR-compatible tele-robotic system for MRI-guided  intervention: system overview and mechanical  design[C]. 2007 IEEE/RSJ International Conference  on Intelligent Robots and Systems. San Diego, CA,  USA: IEEE, 2007: 1795-1800. 

[89] Patel N A, Nycz C J, Carvalho P A, et al. An integrated  robotic system for MRI-guided neuroablation:  preclinical evaluation[J]. IEEE Trans Biomed Eng,  2020, 67(10): 2990-2999. 

[90] Guo Z Y, Dong Z Y, Lee K H, et al. Compact design  of a hydraulic driving robot for intraoperative MRIguided bilateral stereotactic neurosurgery[J]. IEEE  Robot Autom Lett, 2018, 3(3): 2515-2522. 

[91] Ho M, McMillan A B, Simard J M, et al. Toward  a meso-scale SMA-actuated MRI-compatible  neurosurgical robot[J]. IEEE Trans Robot, 2011,  28(1): 213-222. 

[92] Chen Y, Poorman M E, Comber D B, et al. Treating  epilepsy via thermal ablation: initial experiments with  an MRI-guided concentric tube robot[C]. Proceedings  of the 2017 Design of Medical Devices Conference.  Minneapolis, Minnesota, USA: ASME, 2017, 40672:  V001T02A002. 

[93] McBeth P B, Louw D F, Rizun P R, et al. Robotics in  neurosurgery[J]. Ame J Surg, 2004, 188(4): 68-75. 

[94] Liu J Z, Dai T H, Elster T H, et al. Simultaneous  measurement of human joint force, surface  electromyograms, and functional MRI-measured brain  activation[J]. J Neurosci Methods, 2000, 101(1): 49- 57. 

[95] Khanicheh A, Muto A, Triantafyllou C, et al. fMRIcompatible rehabilitation hand device[J]. J Neuroeng  Rehabil, 2006, 3(1): 1-11. 

[96] Flueckiger M, Bullo M, Chapuis D, et al. fMRI  compatible haptic interface actuated with traveling  wave ultrasonic motor[C]. Fourtieth IAS Annual  Meeting. Conference Record of the 2005 Industry  Applications Conference, 2005. Hong Kong, China:  IEEE, 2005, 3: 2075-2082.

印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈