核磁共振成像(Magnetic Resonance Imaging,MRI)通过高分辨率目标组织扫描,可以使医生和患者 在免于电离辐射的情况下实现实时成像。近年来,科学家和工程师们一直尝试将机器人技术与 MRI 结合在一起,实 现机器人辅助和图像引导相结合的诊断及治疗。本文介绍了可用于术中 MRI 的医疗机器人系统,具体包括它们的成 像兼容性、驱动方式、传感方式、运动学以及机械和电气设计,这些技术使得机器人在 MRI 引导下的介入诊疗成为 可能,此外,基于不同的医学场景,本文对各种 MR 兼容机器人系统做了分类和比较研究,最后对 MR 兼容机器人 领域的未来发展方向进行了展望。
Magnetic resonance imaging (MRI) is able to scan target tissues with high resolution, and allows clinicians as well as patients to be free from ionizing radiation. MRI enables real-time imaging of patients. In recent years, scientists and engineers have been trying to combine robotic technology with MRI to achieve robot-assisted and image-guided diagnosis and treatment. Medical robotic systems that could be used in intraoperative MRI were introduced in this survey, their MR compatibility, actuation, sensing, kinematics, and electro-mechanical designs were specially summarized and discussed. These robots make interventions under the guidance of MRI possible. In addition, based on various clinical scenarios, MR-compatible robotic systems are classified and comparatively studied. Finally, we conclude the survey with an outlook on the future research directions of the MR-compatible robotics.
收稿日期:2021-12-07 录用日期:2022-06-16
Received Date: 2021-12-07 Accepted Date: 2022-06-16
基金项目:国家自然科学基金青年项目(61803103)
Foundation Item: National Natural Science Foundation of China (61803103)
通讯作者:郭靖,Email:toguojing@gmail.com
Corresponding Author: GUO Jing, Email: toguojing@gmail.com
引用格式:吴迪,周兵,肖霄,等 . 用于治疗和诊断的核磁共振兼容手术机器人系统的发展现状 [J]. 机器人外科学杂志(中英文), 2023,4(4):299-319.
Citation: WU D, ZHOU B, XIAO X, et al. A survey on MR-compatible surgical robots for treatment and diagnosis [J]. Chinese Journal of Robotic Surgery, 2023, 4 (4): 299-319.
注:吴迪,原单位为德国慕尼黑工业大学机械工程学院,现单位为比利时鲁汶大学机械工程系
[1] Shellock F G, Woods T O, Crues J V 3rd. MR labeling information for implants and devices: explanation of terminology[J]. Radiology, 2009, 253(1): 26-30.
[2] Davies B. A review of robotics in surgery[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2000, 214(1): 129- 140.
[3] Dogangil G, Davies B L, Baena F R Y. A review of medical robotics for minimally invasive soft tissue surgery[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(5): 653-679.
[4] Masamune K, Kobayashi E, Masutani Y, et al. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery[J]. J Image Guid Surg, 1995, 1(4): 242-248.
[5] Chinzei K, Kikinis R, Jolesz F A. MR compatibility of mechatronic devices: design criteria[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg: Springer, 1999: 1020-1030.
[6] Chinzei K, Hata N, Jolesz F A, et al. Surgical assist robot for the active navigation in the intraoperative MRI: Hardware design issues[C]. Proceedings. 2000 IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS 2000). Takamatsu, Japan: IEEE, 2000: 727-732.
[7] Gassert R, Burdet E, Chinzei K. MRI-compatible robotics[J]. IEEE Eng Med Biol Mag, 2008, 27 (3): 12- 14.
[8] Hempel E, Fischer H, Gumb L, et al. An MRI-compatible surgical robot for precise radiological interventions[J]. Comput Aided Surg, 2003, 8 (4): 180-191.
[9] Hidler J, Hodics T, Xu B, et al. MR compatible force sensing system for real-time monitoring of wrist moments during fMRI testing[J]. J Neurosci Methods, 2006, 155 (2): 300-307.
[10] Riener R, Villgrattner T, Kleiser R, et al. fMRIcompatible electromagnetic haptic interface[C]. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. Shanghai, China: IEEE, 2006: 7024-7027.
[11] Burdet E, Gassert R, Gowrishankar G, et al. fMRI compatible haptic interfaces to investigate human motor control[C]. Experimental robotics IX. Berlin, Heidelberg, Springer, 2006: 21, 25-34.
[12] Krieger A, Susil R C, Menard C, et al. Design of a novel MRI compatible manipulator for image guided prostate interventions[J]. IEEE Trans Biomed Eng, 2005, 52(2): 306-313.
[13] Sutherland G R, McBeth P B, Louw D F. NeuroArm: an MR compatible robot for microsurgery[J]. International congress series, 2003. DOI: 10.1016/ S0531-5131(03)00439-4.
[14] Tse Z T H, Janssen H, Hamed A, et al. Magnetic resonance elastography hardware design: a survey[J]. Proc Inst Mech Eng H, 2009, 223(4): 497-514.
[15] Mathier J B, Martel S. Magnetic microparticle steering within the constraints of an MRI system: proof of concept of a novel targeting approach[J]. Biomed Microdevices, 2007, 9 (6): 801-808.
[16] Roberts T P L, Hassenzahl W V, Hetts S W, et al. Remote control of catheter tip deflection: an opportunity for interventional MRI[J]. Magn Reson Med, 2002, 48 (6): 1091-1095.
[17] XIAO Q Y, Monfaredi R, Musa M, et al. MRconditional actuations: a review[J]. Annals of Biomedical Engineering, 2020, 48(12): 2707-2733.
[18] Larson B T, Erdman A G, Tsekos M K, et al. “Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast[J]. J Biomech Eng, 2004, 126 (4): 458-465.
[19] Harada K, Tsubouchi K, Fujie M G, et al. Micro manipulators for intrauterine fetal surgery in an open MRI[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA). Barcelona, Spain: IEEE, 2005.
[20] Hata N, Hashimoto R, Tokuda J, et al. Needle guiding robot for MR-guided microwave thermotherapy of liver tumor using motorized remote-center-ofmotion constraint[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005: 1652-1656.
[21] Briggs R W, Dy-Liacco L, Malcolm M P, et al. A pneumatic vibrotactile stimulation device for fMRI[J]. Magn Reson Med, 2004, 51 (3): 640-643.
[22] Zappe A C, Maucher T, Meier K, et al. Evaluation of a pneumatically driven tactile stimulator device for vision substitution during fMRI studies[J]. Magn Reson Med, 2004, 51(4): 828-834.
[23] Golaszewski S M, Zschiegner F, Siedentopf C M, et al. A new pneumatic vibrator for functional magnetic resonance imaging of the human sensorimotor cortex[J]. Neurosci Lett, 2002, 324 (2): 125-128.
[24] Chen Y, Godage I S, Tse Z, et al. Characterization and control of a pneumatic motor for MR-conditional robotic applications[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2780-2789.
[25] Musa M, Sengupta S, Chen Y. Design of a 6 DoF parallel robot for MRI-guided interventions[C]. In IEEE, 2021 International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA: IEEE, 2021: 1-7. [26] Groenhuis V, Siepel F J, Stramigioli S. Miniaturization of MR safe pneumatic rotational stepper motors[C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China: IEEE, 2019.
[27] Farimani F S, Misra S. Introducing PneuAct: parametrically-designed MRI-Compatible pneumatic stepper actuator[C]. 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD, Australia: IEEE, 2018.
[28] Taillant E, Avila-Vilchis J C, Allegrini C, et al. CT and MR compatible light puncture robot: architectural design and first experiments[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg: Springer, 2004.
[29] Stoianovici D. Multi-imager compatible actuation principles in surgical robotics[J]. Int J Med Robot, 2005, 1(2): 86-100.
[30] DiMaio S P, Fischer G S, Haker S J, et al. A system for MRI-guided prostate interventions[C]. The First IEEE/ RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. Pisa, Italy: IEEE, 2006: 68-73.
[31] Dong Z Y, Guo Z Y, Lee Kit-Hang, et al. Highperformance continuous hydraulic motor for MR safe robotic teleoperation[J]. IEEE Robot Autom Lett, 2019, 4 (2): 1964-1971.
[32] Bishop J, Poole G, Leitch M, et al. Magnetic resonance imaging of shear wave propagation in excised tissue[J]. J Magn Reson Imaging, 1998, 8 (6): 1257-1265.
[33] Juergen B, Braun K, Sack I. Electromagnetic actuator for generating variably oriented shear waves in MR elastography[J]. Magn Reson Med, 2003, 50 (1): 220- 222.
[34] Rossman P J, Muthupillai R, Richard L. Ehman. Driver device for MR elastography[P]. U.S. Patent No. 5, 952, 828. 14 Sep. 1999.
[35] Li G, Patel N A, Liu W Q, et al. A fully actuated bodymounted robotic assistant for mri-guided low back pain injection[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France: IEEE, 2020: 5495-5501.
[36] Wu D, Li G, Patel N, et al. Remotely actuated needle driving device for mri-guided percutaneous interventions[C]. 2019 International Symposium on Medical Robotics (ISMR). Atlanta, GA, USA: IEEE, 2019: 1-7.
[37] Ganesh G, Gassert R, Burdet E, et al. Dynamics and control of an MRI compatible master-slave system with hydrostatic transmission[C]. IEEE International Conference on Robotics and Automation, 2004. New Orleans, LA, USA: IEEE, 2004, 2: 1288-1294.
[38] Vogan J, Wingert A, Plante J S, et al. Manipulation in MRI devices using electrostrictive polymer actuators: with an application to reconfigurable imaging coils[C]. IEEE International Conference on Robotics and Automation, 2004. New Orleans, LA, USA: IEEE, 2004, 3: 2498-2504.
[39] Khanicheh A, Muto A, Triantafyllou C, et al. MR compatible ERF driven hand rehabilitation device[C]. 9th International Conference on Rehabilitation Robotics, 2005. Chicago, IL, USA: IEEE, 2005: 7-12. [40] Chapuis D, Gassert R, Burdet E, et al. Hybrid ultrasonic motor and electrorheological clutch system for MR-compatible haptic rendering[C]. 2006 IEEE/ RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006: 1553-1557.
[41] Hribar A, Munih M. Development and testing of fMRIcompatible haptic interface[J]. Robotica, 2010, 28(2): 259-265.
[42] Li S, Frisoli A, Borelli L, et al. Design of a new fMRI compatible haptic interface[C]. World Haptics 2009-Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Salt Lake City, UT, USA: IEEE, 2009: 535-540.
[43] Gassert R, Moser R, Burdet E, et al. MRI/fMRIcompatible robotic system with force feedback for interaction with human motion[J]. IEEE ASME Trans Mechatron, 2006, 11(2): 216-224.
[44] Tada M, Shinsuke S, Tsukasa O. Development of an optical 2-axis force sensor usable in MRI environments[C]. SENSORS, 2002 IEEE. Orlando, FL, USA: IEEE, 2002, 2: 984-989.
[45] Chapuis D, Gassert R, Sache L, et al. Design of a simple MRI/fMRI compatible force/torque sensor[C]. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Sendai, Japan: IEEE, 2004, 3: 2593-2599.
[46] Frishman S, Kight A, Pirozzi L, et al. Enabling inbore mri-guided biopsies with force feedback[J]. IEEE Trans Haptics, 2020, 13(1): 159-166.
[47] Li G, Su H, Cole G A, et al. Robotic system for MRIguided stereotactic neurosurgery[J]. IEEE Trans Biomed Eng, 2015, 62(4): 1077-1088.
[48] Hata N, Tokuda J, Hurwitz S, et al. MRI-compatible manipulator with remote-center-of-motion control[J]. J Magn Reson Imaging, 2008, 27(5): 1130-1138.
[49] Hushek S G, Fetics B, Moser R M, et al. Initial clinical experience with a passive electromagnetic 3D locator system[C]. 5th Interventional MRI Symposium, 2004, No. 605.
[50] Chen Y, Wang W, Schmidt E J, et al. Design and fabrication of MR-tracked metallic stylet for gynecologic brachytherapy[J]. IEEE ASME Trans Mechatron, 2015, 21(2): 956-962.
[51] Wang W, Viswanathan A N, Damato A L, et al. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy[J]. Medical physics, 2015, 42 (12): 7114-7121.
[52] Chen Y, Tse Z T, Wang W, et al. Intra-cardiac MR imaging & MR-tracking catheter for improved MRguided EP[J]. J Cardiovasc Magn Reson, 2015, 17 (1): 1-2.
[53] Norberg M, Egevad L, Holmberg L, et al. The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer[J]. Urology, 1997, 50 (4): 562-566.
[54] D’amico A V, Tempany C M, Cormack R, et al. Transperineal magnetic resonance image guided prostate biopsy[J]. J Urol, 2000, 164 (2): 385-387.
[55] Stone N N, Roy J, Hong S, et al. Prostate gland motion and deformation caused by needle placement during brachytherapy[J]. Brachytherapy, 2002, 1 (3): 154- 160.
[56] Fischer G S, Lordachita L, Csoma C, et al. MRIcompatible pneumatic robot for transperineal prostate needle placement[J]. IEEE ASME Trans Mechatron, 2008, 13(3): 295-305.
[57] Elhawary H, Zivanovic A, Rea M, et al. A modular approach to MRI-compatible robotics[J]. IEEE Eng Med Biol Mag, 2008, 27(3): 35-41.
[58] Stoianovici D, Song D, Petrisor D, et al. “MRI Stealth” robot for prostate interventions[J]. Minim Invasive Ther Allied Technol, 2007, 16(4): 241-248.
[59] Song S E, Cho N B, Fischer G, et al. Development of a pneumatic robot for MRI-guided transperineal prostate biopsy and brachytherapy: new approaches[C]. 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, USA: IEEE, 2010: 2580-2585.
[60] Dirk B, Winkel A, Hamm B, et al. MR imaging-guided prostate biopsy with a closed MR unit at 1.5 T: initial results[J]. Radiology, 2005, 234(2): 576-581.
[61] Moreira P, Boskma K J, Misra S. Towards MRI-guided flexible needle steering using fiber Bragg gratingbased tip tracking[C]. 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 4849-4854.
[62] Chen L, Paetz T, Dicken V, et al. Design of a dedicated five degree-of-freedom magnetic resonance imaging compatible robot for image guided prostate biopsy [J]. Journal of Medical Devices, 2015, 9(1): 015002
[63] Thomas S, Puccini S, Schneider Jens-Peter, et al. Interventional and intraoperative MR: review and update of techniques and clinical experience[J]. Eur Radiol, 2004, 14 (12): 2212-2227.
[64] Bricault I, Zemiti N, Jouniaux E, et al. Light puncture robot for CT and MRI interventions[J]. IEEE Eng Med Biol Mag, 2008, 27(3): 42-50.
[65] Melzer A, Gutmann B, Lukoschek A, et al. Experimental evaluation of an MRI compatible telerobotic system for CT MRI guided interventions[J]. Supplement to Radiology, 2003, 226: 409-444.
[66] HE Z L, DONG Z Y, FANG G, et al. Design of a percutaneous MRI-guided needle robot with soft fluiddriven actuator[J]. IEEE Robot Autom Lett, 2020, 5(2): 2100-2107.
[67] Kim G H, Patel N, Yan J, et al. Shoulder-mounted robot for MRI-guided arthrography: clinically optimized system[C]. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany: IEEE, 2019: 1977-1980.
[68] Patel N A, Yan J W, Levi D, et al. Body-mounted robot for image-guided percutaneous interventions: mechanical design and preliminary accuracy evaluation[C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 1443-1448.
[69] Yan J W, Patel N, Li G, et al. Body-mounted MRI-conditional parallel robot for percutaneous interventions structural improvement, calibration, and accuracy analysis[C]. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019: 1990- 1993.
[70] Li G, Patel N A, Sharma K, et al. Body-mounted robotics for interventional MRI procedures[J]. IEEE Trans Med Robot Bionics, Berlin, Germany: IEEE, 2020, 2(4): 557-560.
[71] Li G, Patel N A, Wang Y Z, et al. Fully actuated bodymounted robotic system for MRI-guided lower back pain injections: Initial phantom and cadaver studies[J]. IEEE Robot Autom Lett, 2020, 5(4): 5245-5251.
[72] Li G, Patel N A, Hagemeister J, et al. Body-mounted robotic assistant for MRI-guided low back pain injection[J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15(2): 321- 331.
[73] Wu D, Li G, Patel N, et al. Remotely actuated needle driving device for MRI-guided percutaneous interventions: force and accuracy evaluation[C]. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany: IEEE, 2019: 1985-1989.
[74] Morikawa S, Naka S, Murakami K, et al. Preliminary clinical experiences of a motorized manipulator for magnetic resonance image-guided microwave coagulation therapy of liver tumors[J]. Ame J Surg, 2009, 198(3): 340-347.
[75] Hata N, Ohara F, Hashimoto R, et al. Needle guiding robot with five-bar linkage for MR-guided thermotherapy of liver tumor[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg: Springer, 2004: 161-168.
[76] Miyata N, Kobayashi E, Kim D, et al. Micro-grasping forceps manipulator for MR-guided neurosurgery[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg: Springer, 2002: 107-113.
[77] Hashizume M, Yasunaga T, Tanoue K, et al. New realtime MR image-guided surgical robotic system for minimally invasive precision surgery[J]. Int J CARS, 2008, 2(6): 317-325.
[78] Sato I, Ryoichi N, Ken M. MRI compatible manipulator with MRI-guided needle insertion support system[C]. 2010 International Symposium on MicroNanoMechatronics and Human Science. Nagoya, Japan: IEEE, 2010: 77-82.
[79] Franco E, Brujic D, Rea M, et al. Needle-guiding robot for laser ablation of liver tumors under MRI guidance[J]. IEEE ASME Trans Mechatron, 2015, 21(2): 931-944.
[80] Kokes R, Lister K, Gullapalli R, et al. Towards a teleoperated needle driver robot with haptic feedback for RFA of breast tumors under continuous MRI[J]. Med Image Anal, 2009, 13(3): 445-455.
[81] Yang B, Tan U, McMillan A, et al. Design and implementation of a pneumatically-actuated robot for breast biopsy under continuous MRI[C]. 2011 IEEE International Conference on Robotics and Automation (ICRA). Shanghai, China: IEEE, 2011: 674-679.
[82] ZHANG T X, WEN Y S, LIU Y H. Developing a parallel robot for MRI-guided breast intervention[J]. IEEE Trans Med Robot Bionics, 2019, 2(1): 17-27.
[83] Groenhuis V, Siepel F J, Veltman J, et al. Design and characterization of Stormram 4: an MRI-compatible robotic system for breast biopsy[C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE, 2017: 928-933.
[84] Navarro-Alarcon D, Satwinder S, Tianxue Z, et al. Developing a compact robotic needle driver for MRIguided breast biopsy in tight environments[J]. IEEE Robot Autom Lett, 2017, 2(3): 1648-1655. [85] Chen Y, Godage I, Su H, et al. Stereotactic systems for MRI-guided neurosurgeries: a state-of-the-art review[C]. Annals of Biomedical Engineering, 2019, 47(2): 335-353.
[86] Koseki Y, Toshikatsu Washio T, Chinzei K, et al. Endoscope manipulator for trans-nasal neurosurgery, optimized for and compatible to vertical field open MRI[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Heidelberg: Springer, 2002, 2488: 114-121.
[87] YUN C, HONG Z D, ZHAO L, et al. Design and optimization analysis of open-MRI compatibile robot for neurosurgery[C]. 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai, China: IEEE, 2008: 1773- 1776.
[88] Raoufi C, Ben-Tzvi P, Goldenberg A A, et al. A MR-compatible tele-robotic system for MRI-guided intervention: system overview and mechanical design[C]. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA: IEEE, 2007: 1795-1800.
[89] Patel N A, Nycz C J, Carvalho P A, et al. An integrated robotic system for MRI-guided neuroablation: preclinical evaluation[J]. IEEE Trans Biomed Eng, 2020, 67(10): 2990-2999.
[90] Guo Z Y, Dong Z Y, Lee K H, et al. Compact design of a hydraulic driving robot for intraoperative MRIguided bilateral stereotactic neurosurgery[J]. IEEE Robot Autom Lett, 2018, 3(3): 2515-2522.
[91] Ho M, McMillan A B, Simard J M, et al. Toward a meso-scale SMA-actuated MRI-compatible neurosurgical robot[J]. IEEE Trans Robot, 2011, 28(1): 213-222.
[92] Chen Y, Poorman M E, Comber D B, et al. Treating epilepsy via thermal ablation: initial experiments with an MRI-guided concentric tube robot[C]. Proceedings of the 2017 Design of Medical Devices Conference. Minneapolis, Minnesota, USA: ASME, 2017, 40672: V001T02A002.
[93] McBeth P B, Louw D F, Rizun P R, et al. Robotics in neurosurgery[J]. Ame J Surg, 2004, 188(4): 68-75.
[94] Liu J Z, Dai T H, Elster T H, et al. Simultaneous measurement of human joint force, surface electromyograms, and functional MRI-measured brain activation[J]. J Neurosci Methods, 2000, 101(1): 49- 57.
[95] Khanicheh A, Muto A, Triantafyllou C, et al. fMRIcompatible rehabilitation hand device[J]. J Neuroeng Rehabil, 2006, 3(1): 1-11.
[96] Flueckiger M, Bullo M, Chapuis D, et al. fMRI compatible haptic interface actuated with traveling wave ultrasonic motor[C]. Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005. Hong Kong, China: IEEE, 2005, 3: 2075-2082.