随着康复医学和机器人技术的不断发展,康复机器人系统也顺应着临床需要而迎来发展新纪元。康 复机器人系统凭借其自动化、可编程等特性,可以很好地满足临床康复工作的需要,同时可以有效整合肌电图、脑 机接口、功能性电刺激等新型康复辅助技术,进而有效提高临床康复效果。随着医工等多学科交叉合作的过程不断 深化,未来的康复机器人系统既需要强大的康复医学理论支撑,又需契合临床康复需求,这样才能同时保证机器人 辅助康复的质量和效率。
With the continuous development of rehabilitation medicine and robotics, the rehabilitation robotic system has ushered in a new era of progress with the clinical needs. The rehabilitation robotic system can well meet the needs of clinical rehabilitation with its automation and programmability, and it can effectively integrate electromyography, brain-computer interface, functional electrical stimulation and other new rehabilitation-assisted technologies together, which is conducive to improve the clinical rehabilitation effect well. With the deepening of multidisciplinary cooperation between medicine and engineering, the future rehabilitation robotic system not only needs strong theoretical support of rehabilitation medicine, but also meets the needs of clinical rehabilitation, so as to ensure the quality and efficiency of robot-assisted rehabilitation.
收稿日期:2022-03-11 录用日期:2022-09-28
Received Date: 2022-03-11 Accepted Date: 2022-09-28
基金项目:吉林大学第二批本科“创新示范课程”建设项目(419050531034,419051000052)
Foundation Item: The Second Construction Project of Jilin University for Undergraduate “Innovative Demonstration Course” (419050531034, 419051000052)
通讯作者:张志远,Email:Z1810097959@163.com
Corresponding Author: ZHANG Zhiyuan, Email: Z1810097959@163.com
引用格式:刘忠良,张坤,魏彦龙,等 . 康复机器人系统的研究现状与展望 [J]. 机器人外科学杂志(中英文),2023,4(6): 497-506.
Citation: LIU Z L, ZHANG K, WEI Y L, et al. Present status and progress of rehabilitation robotic system[J]. Chinese Journal of Robotic Surgery, 2023, 4(6): 497-506.
[1] Pignolo L. Robotics in neuro-rehabilitation[J]. J Rehabil Med, 2009, 41(12): 955-960.
[2] Wagner T H, Lo A C, Peduzzi P, et al. An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke[J]. Stroke, 2011, 42(9): 2630-2632.
[3] Stefano M, Patrizia P, Mario A, et al. Robotic upper limb rehabilitation after acute stroke by nerebot: evaluation of treatment costs[J]. Biomed Res Int, 2014. DOI: 10.1155/2014/265634.
[4] Winser S, Lee S H, Law H S, et al. Economic evaluations of physiotherapy interventions for neurological disorders: a systematic review[J]. Disabil Rehabil, 2020, 42(7): 892-901.
[5] Lang C E, Macdonald J R, Reisman D S, et al. Observation of amounts of movement practice provided during stroke rehabilitation[J]. Arch Phys Med Rehabil, 2009, 90(10): 1692-1698.
[6] Mccabe J, Monkiewicz M, Holcomb J, et al. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial[J]. Arch Phys Med Rehabil, 2015, 96(6): 981-990.
[7] Ward N S, Brander F, Kelly K. Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the Queen Square programme[J]. J Neurol Neurosurg Psychiatry, 2019, 90(5): 498-506.
[8] Cramer S C, Le V, Saver J L, et al. Intense arm rehabilitation therapy improves the modified rankin scale score: association between gains in impairment and function[J]. Neurology, 2021, 96(14): e1812-e1822.
[9] Pollock A, Farmer S E, Brady M C, et al. Interventions for improving upper limb function after stroke[J]. Cochrane Database Syst Rev, 2014, 2014(11): CD010820.
[10] Liao C D, Tsauo J Y, Huang S W, et al. Preoperative range of motion and applications of continuous passive motion predict outcomes after knee arthroplasty in patients with arthritis[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1259-1269.
[11] Büdingen T. Grundzüge der Ernährungsstörungen des Herzmuskels (Kardiodystrophien) und ihrer Behandlung mit Traubenzuckerinfusionen[J]. DMWDeutsche Medizinische Wochenschrift, 1919, 45(3): 64-67.
[12] Vukobratovic M, Hristic D, Stojiljkovic Z. Development of active anthropomorphic exoskeletons[J]. Med Biol Eng, 1974, 12(1): 66-80.
[13] Dijkers M P, deBear P C, Erlandson R P, et al. Patient and staff acceptance of robotic technology in occupational therapy: a pilot study[J]. J Rehabil Res Dev, 1991, 28(2): 33-44.
[14] Hogan N, Krebs H I, Charnarong J, et al. Interactive robotic therapist: US5466213[P]. 1995-11-14.
[15] Colombo G, Joerg M, Schreier R, et al. Treadmill training of paraplegic patients using a robotic orthosis[J]. J Rehabil Res Dev, 2000, 37(6): 693-700.
[16] Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait[J]. J Rehabil Res Dev, 2000, 37(6): 701-708.
[17] Aisen M L, Krebs H I, Hogan N, et al. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke[J]. Arch Neurol, 1997, 54(4): 443-446.
[18] Krebs H I, Hogan N, Aisen M L, et al. Robot-aided neurorehabilitation[J]. IEEE Trans Rehabil Eng, 1998, 6(1): 75-87.
[19] Hesse S, Werner C, Bardeleben A, et al. Body weightsupported treadmill training after stroke[J]. Curr Atheroscler Rep, 2001, 3(4): 287-294.
[20] Jezernik S, Colombo G, Keller T, et al. Robotic orthosis lokomat: a rehabilitation and research tool[J]. Neuromodulation, 2003, 6(2): 108-115.
[21] Krebs H I, Ferraro M, Buerger S P, et al. Rehabilitation robotics: pilot trial of a spatial extension for MITManus[J]. J Neuroeng Rehabil, 2004; 1(1): 5.
[22] Lo A C, Guarino P D, Richards L G, et al. Robotassisted therapy for long-term upper-limb impairment after stroke[J]. N Engl J Med, 2010, 362(19): 1772- 1783.
[23] Mehrholz J, Pohl M, Platz T, et al. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke[J]. Cochrane Database Syst Rev, 2015, 2015(11): CD006876.
[24] Veerbeek J M, Langbroek-Amersfoort A C, van Wegen E E, et al. Effects of robot-assisted therapy for the upper limb after stroke[J]. Neurorehabil Neural Repair, 2017, 31(2): 107-121.
[25] Rodgers H, Bosomworth H, Krebs H I, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial[J]. Lancet, 2019, 394(10192): 51-62.
[26] Hsu H Y, Chiu H Y, Kuan T S, et al. Robotic-assisted therapy with bilateral practice improves task and motor performance in the upper extremities of chronic stroke patients: a randomised controlled trial[J]. Aust Occup Ther J, 2019, 66(5): 637-647.
[27] Hung C S, Hsieh Y W, WU C Y, et al. Comparative assessment of two robot-assisted therapies for the upper extremity in people with chronic stroke[J]. Am J Occup Ther, 2019, 73(1): 7301205010p1-7301205010p9.
[28] Orihuela-Espina F, Roldán G F, Sánchez-Villavicencio I, et al. Robot training for hand motor recovery in subacute stroke patients: a randomized controlled trial[J]. J Hand Ther, 2016, 29(1): 51-57.
[29] Klamroth-Marganska V, Blanco J, Campen K, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial[J]. Lancet Neurol, 2014, 13(2): 159- 166.
[30] Mazzoleni S, Focacci A, Franceschini M, et al. Robotassisted end-effector-based gait training in chronic stroke patients: a multicentric uncontrolled observational retrospective clinical study[J]. NeuroRehabilitation, 2017, 40(4): 483-492.
[31] Bishop L, Omofuma I, Stein J, et al. Treadmill-based locomotor training with robotic pelvic assist and visual feedback: a feasibility study[J]. J Neurol Phys Ther, 2020, 44(3): 205-213.
[32] Mehrholz J , Thomas S , Kugler J , e t al. Electromechanical-assisted training for walking after stroke[J]. Cochrane Database Syst Rev, 2020, 10(10): CD006185.
[33] Baronchelli F, Zucchella C, Serrao M, et al. The effect of robotic assisted gait training with lokomat® on balance control after stroke: systematic review and meta-analysis[J]. Front Neurol, 2021. DOI: 10.3389/ fneur.2021.661815.
[34] Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke[J]. Neurorehabil Neural Repair, 2009, 23(1): 5-13.
[35] Duncan P W, Sullivan K J, Behrman A L, et al. Body-weight-supported treadmill rehabilitation after stroke[J]. N Engl J Med, 2011, 364(21): 2026-2036.
[36] Peters H T, Page S J, Persch A. Giving them a hand: wearing a myoelectric elbow-wrist-hand orthosis reduces upper extremity impairment in chronic stroke[J]. Arch Phys Med Rehabil, 2017, 98(9): 1821-1827.
[37] Molteni F, Gasperini G, Gaffuri M, et al. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results[J]. Eur J Phys Rehabil Med, 2017, 53(5): 676-684.
[38] Calabrò R S, Naro A, Russo M, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial[J]. J Neuroeng Rehabil, 2018, 15(1): 35.
[39] Caliandro P, Molteni F, Simbolotti C, et al. Exoskeletonassisted gait in chronic stroke: an EMG and functional near-infrared spectroscopy study of muscle activation patterns and prefrontal cortex activity[J]. Clin Neurophysiol, 2020, 131(8): 1775-1781.
[40] Buesing C, Fisch G, O’donnell M, et al. Effects of a wearable exoskeleton stride management assist system (SMA® ) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial[J]. J Neuroeng Rehabil, 2015. DOI: 10.1186/s12984-015- 0062-0.
[41] Jayaraman A, O’brien M K, Madhavan S, et al. Stride management assist exoskeleton vs functional gait training in stroke: a randomized trial[J]. Neurology, 2019, 92(3): e263-e273.
[42] Rong W, Tong K Y, Hu X L, et al. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke[J]. Disabil Rehabil Assist Technol, 2015, 10(2): 149-159.
[43] Nam C, Rong W, Li W, et al. The effects of upperlimb training assisted with an electromyography-driven neuromuscular electrical stimulation robotic hand on chronic stroke[J]. Front Neurol, 2017. DOI: 10.3389/ fneur.2017.00679.
[44] Rong W, Li W M, Pang M, et al. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke[J]. J Neuroeng Rehabil, 2017, 14(1): 34.
[45] Huang Y H, Nam C Y, Li W M, et al. A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: a randomized controlled trial[J]. Biomed Signal Process Control, 2020. DOI: 10.1016/j.bspc.2019.101723.
[46] Daly J J, Cheng R, Rogers J, et al. Feasibility of a new application of noninvasive Brain Computer Interface (BCI): a case study of training for recovery of volitional motor control after stroke[J]. J Neurol Phys Ther, 2009, 33(4): 203-211.
[47] Frolov A A, Mokienko O, Lyukmanov R, et al. Poststroke rehabilitation training with a motor-imagerybased brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial[J]. Front Neurosci, 2017. DOI: 10.3389/ fnins.2017.00400.
[48] Baniqued P D E, Stanyer E C, Awais M, et al. Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review[J]. J Neuroeng Rehabil, 2021, 18(1): 15.
[49] Correia C, Nuckols K, Wagner D, et al. Improving grasp function after spinal cord injury with a soft robotic glove[J]. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(6): 1407-1415.
[50] Yurkewich A, Kozak I J, Hebert D, et al. Hand Extension Robot Orthosis (HERO) Grip Glove: enabling independence amongst persons with severe hand impairments after stroke[J]. J Neuroeng Rehabil, 2020, 17(1): 33.
[51] Nam C Y, Rong W, Li W M, et al. An exoneuromusculoskeleton for self-help upper limb rehabilitation after stroke[J]. Soft Robot, 2020, 9(1): 14-35.
[52] Cauraugh J H, Kang N. Bimanual movements and chronic stroke rehabilitation: looking back and looking forward[J]. Applied Sciences-basel, 2021, 11(22): 10858.
[53] Chen P M, Kwong P W H, Lai C K Y, et al. Comparison of bilateral and unilateral upper limb training in people with stroke: a systematic review and meta-analysis[J]. PLoS One, 2019, 14(5): e0216357. [54] Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function[J]. Curr Opin Neurol, 2010, 23(6): 661-670.