中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

六自由度上肢康复机器人机构设计及轨迹规划

Mechanism design and trajectory planning of a 6-DOF upper limb rehabilitation robot

作者:张邦成,兰旭腾,刘帅,庞在祥

Vol. 5 No. 2 Apr. 2024 DOI: 10.12180/j.issn.2096-7721.2024.02.001 发布日期:2024-07-10
关键词:上肢康复机器人;运动学分析;轨迹规划

作者简介:

本研究设计一款六自由度上肢康复机器人,机器人采用绳索驱动、串并联相结合的关节结构形式, 能够牵引偏瘫患者的上肢实现多个关节且活动范围较大的康复运动训练。针对上肢康复机器人机构适用性问题,基 于运动学理论和 D-H 坐标系法建立上肢康复机器人本体 D-H 参数模型,根据空间坐标向量之间的平移、旋转关系, 对运动序列建模分析,求解正运动学,通过封闭解法求解逆运动学。基于运动学分析结果,提出五次多项式函数关 节空间轨迹规划方法,对上肢提拉抬肘运动进行轨迹规划仿真,验证了康复运动过程中的运动能力。

A six-degree-of-freedom upper limb rehabilitation robot was designed in this study. The rope-driven robot was taken series-parallel circuit, which could pull the upper limbs of hemiplegic patients to achieve rehabilitation exercise training with multiple joints and a large range of motion. Aiming at the applicability of the upper limb rehabilitation robot mechanism, based on the kinematics theory, the Denavit-Hartenberg (DH) parameter model of the upper limb rehabilitation robot body was designed based on the DH coordinates. Then the motion sequence was modeled and analyzed to solve the forward kinematics by analyzing the relationship of translation and rotation between the space coordinate vectors, and the inverse kinematics was solved with the closed-form solution. Based on the results of kinematics analysis, a quintic polynomial function on joint space trajectory planning was proposed to simulate the trajectory planning of the upper limb lifting and elbow lifting, which could be used to verify the movement ability during the rehabilitation exercise.

稿件信息

收稿日期:2022-03-11  录用日期:2023-04-28 Received Date: 2022-03-11  

Accepted Date: 2023-04-28 

基金项目:国家自然科学基金面上项目(51875047) 

Foundation Item: National Natural Science Foundation of China(51875047) 

通讯作者:庞在祥,Email:pangzaixiang@ccut.edu.cn 

Corresponding Author: PANG Zaixiang, Email: pangzaixiang@ccut.edu.cn 

引用格式:张邦成,兰旭腾,刘帅,等 . 六自由度上肢康复机器人机构设计及轨迹规划 [J].机器人外科学杂志(中英文),2024,5(2): 115-120.

Citation: ZHANG B C, LAN X T, LIU S, et al. Mechanism design and trajectory planning of a 6-DOF upper limb rehabilitation robot [J]. Chinese Journal of Robotic Surgery, 2024, 5(2): 115-120

参考文献

[1] Tarvonen-Schrder S, Niemi T, Hurme S, et al. Fall assessment in subacute inpatient stroke rehabilitation using clinical characteristics and the most preferred stroke severity and outcome measures[J]. Eur J Physiother, 2021. DOI: 10.1080/21679169.2021.1960600.

[2] LI Y C, LIN K C, CHEN C L, et al. A comparative efficacy study of robotic priming of bilateral approach in stroke rehabilitation[J]. Front Neurol, 2021. DOI: 10.3389/fneur.2021.658567. 

[3] Lee S H, Cui J, Liu L, et al. An evidence-based intelligent method for upper-limb motor assessment via a VR training system on stroke rehabilitation[J]. IEEE Access, 2021. DOI: 10.1109/ACCESS.2021.3075778. 

[4] SUN Z B, TIAN Y T, LI H Y, et al. A superlinear convergence feasible sequential quadratic programming algorithm for bipedal dynamic walking robot via discretemechanics and optimal control[J]. Optim Contr Appl Met, 2016, 37(6): 1139-1161. 

[5] Guidali M, Duschau-Wicke A, Broggi S, et al. A robotic system to train activities of daily living in a virtual environment[J]. Med Biol Eng Comput, 2011, 49(10): 1213-1223. 

[6] SUN Z B, SHI T, WEI L, et al. Noise-suppressing zeroing neural network for online solving timevarying nonlinear optimization problem: a control-based approach[J]. Neural Comput. Appl, 2020, 32(2): 11505- 11520. 

[7] Perry J C, Rosen J, Burns S. Upper-limb powered exoskeleton design[J]. IEEE/ASME Trans. Mechatron, 2007, 12(4): 408-417. 

[8] SUN Z B, LI F, ZHANG B C, et al. Different modified zeroing neural dynamics with inherent tolerance to noises for time-varying reciprocal problems: a controltheoretic approach[J]. Neurocomputing, 2019. DOI: 10.1016/j.neucom.2019.01.064. 

[9] Mao Y, Agrawal S K. Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation[J]. IEEE Trans Rob, 2012, 28(4): 84-92. 

[10] Perry J C, Rosen J. Design of a 7 degree-of-freedom upper-limb powered exoskeleton[J]. IEEE/RAS-EMBS International Conference on Biomedical Robotics & Biomechatronics, 2006, 12(4): 408-417. 

[11] Kousidou S, Tsagarakis N G, Smith C, et al. Taskorientated biofeedback system for the rehabilitation of the upper limb[C]. IEEE 10th International Conference on Rehabilitation Robotics, IEEE Press, 2007: 376- 384. 

[12] Sugar T G, He J H, Koeneman E J, et al. Design and control of rupert: a device for robotic upper extremity repetitive therapy[J]. IEEE Trans. Neural Syst. Rehabil. Eng, 2007, 15(3): 336-346.

[13] Balasubramanian S, Wei R H, Perez M, et al. RUPERT: an exoskeleton robot for assisting rehabilitation of arm functions[C].2008 Virtual Rehabilitation, IEEE Press, 2008, (1): 163-167. 

[14] Klein S, Spencer S, Allington J, et al. Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton[J]. IEEE Trans. Robot, 2010, 26(4): 710-715.

本期文章
[1] 《机器人完全不插管全胸腺切除术安全专家共识》解读(附视频 [2] 《腹腔镜或机器人辅助胰腺癌根治术中国专家共识(2022 年版)》解读 [3] 机器人手术护理配合中国专家共识(2024 版) [4] 机器人辅助腹腔镜手术治疗外阴癌中国专家共识(2024 版):附视频 [5] 机器人辅助腹腔镜手术治疗小儿复发性巨输尿管症一例并文献复习(附视频) [6] 机器人辅助胸腔镜治疗儿童隔离肺日间手术一例报道(附视频) [7] 达芬奇机器人辅助腹腔镜肾盂成形术治疗儿童马蹄肾并肾积水一例报道(附视频) [8] 机器人辅助下舌根恶性肿瘤扩大切除术:江西省首例报道(附视频) [9] 达芬奇机器人辅助动脉导管未闭结扎术:海南省首例报道(附视频) [10] 国产手术机器人辅助腹腔镜下宫颈癌根治术:国内首例报道 [11] 机器人辅助胃部分切除毕罗Ⅰ式吻合术治疗儿童胃丛状纤维黏液瘤并文献复习:全球首例报道(附视频) [12] 机器人辅助经腹膜后入路单孔腹腔镜下活体供肾切取术:全球首例报道(附视频) [13] 机器人辅助单孔胸腔镜肺联合亚段切除术:全球首例报道(附视频) [14] 手术室精准化护理在泌尿外科机器人辅助手术中的应用 [15] 口腔种植机器人辅助手术与传统种植手术的护理配合比较 [16] 机器人辅助完全腹腔镜下脾切断流术联合肝肿瘤切除术的护理配合 [17] 术中体位护理联合手术室低体温防护对机器人辅助根治性膀胱切除原位回肠新膀胱术患者舒适度及术后并发症的效果比较 [18] ADOPT 护理模式在机器人辅助腹腔镜下根治性膀胱 切除术中的应用效果 [19] 机器人辅助手术治疗脊柱骨折伴脊髓神经损伤的研究进展 [20] 显微手术机器人系统在眼底病中的应用现状及进展 [21] 新辅助化疗后机器人辅助与开腹手术治疗局部晚期 子宫颈癌术后生存影响因素的对比分析 [22] 机器人辅助盆腔廓清术在宫颈癌治疗中的应用 [23] 免举宫技术用于机器人辅助宫颈癌根治术的影响因素分析 [24] 老年缺血性脑卒中患者溶栓后采用手功能康复机器人 干预对上肢功能及握力的改善效果 [25] 脑卒中患者重返驾驶能力评估的研究现状及进展 [26] 肌电生物反馈治疗早期脑卒中偏瘫患者上肢功能障碍的疗效分析 [27] 可穿戴式足底压力监测系统的应用及进展 [28] 颈椎病新型智能牵引器的设计研发 [29] 张拉整体机器人构型与运动控制研究现状及进展 [30] 基于递归神经网络的人体下肢运动意图识别方法 [31] 六自由度上肢康复机器人机构设计及轨迹规划
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈