本研究设计一款六自由度上肢康复机器人,机器人采用绳索驱动、串并联相结合的关节结构形式, 能够牵引偏瘫患者的上肢实现多个关节且活动范围较大的康复运动训练。针对上肢康复机器人机构适用性问题,基 于运动学理论和 D-H 坐标系法建立上肢康复机器人本体 D-H 参数模型,根据空间坐标向量之间的平移、旋转关系, 对运动序列建模分析,求解正运动学,通过封闭解法求解逆运动学。基于运动学分析结果,提出五次多项式函数关 节空间轨迹规划方法,对上肢提拉抬肘运动进行轨迹规划仿真,验证了康复运动过程中的运动能力。
A six-degree-of-freedom upper limb rehabilitation robot was designed in this study. The rope-driven robot was taken series-parallel circuit, which could pull the upper limbs of hemiplegic patients to achieve rehabilitation exercise training with multiple joints and a large range of motion. Aiming at the applicability of the upper limb rehabilitation robot mechanism, based on the kinematics theory, the Denavit-Hartenberg (DH) parameter model of the upper limb rehabilitation robot body was designed based on the DH coordinates. Then the motion sequence was modeled and analyzed to solve the forward kinematics by analyzing the relationship of translation and rotation between the space coordinate vectors, and the inverse kinematics was solved with the closed-form solution. Based on the results of kinematics analysis, a quintic polynomial function on joint space trajectory planning was proposed to simulate the trajectory planning of the upper limb lifting and elbow lifting, which could be used to verify the movement ability during the rehabilitation exercise.
收稿日期:2022-03-11 录用日期:2023-04-28 Received Date: 2022-03-11
Accepted Date: 2023-04-28
基金项目:国家自然科学基金面上项目(51875047)
Foundation Item: National Natural Science Foundation of China(51875047)
通讯作者:庞在祥,Email:pangzaixiang@ccut.edu.cn
Corresponding Author: PANG Zaixiang, Email: pangzaixiang@ccut.edu.cn
引用格式:张邦成,兰旭腾,刘帅,等 . 六自由度上肢康复机器人机构设计及轨迹规划 [J].机器人外科学杂志(中英文),2024,5(2): 115-120.
Citation: ZHANG B C, LAN X T, LIU S, et al. Mechanism design and trajectory planning of a 6-DOF upper limb rehabilitation robot [J]. Chinese Journal of Robotic Surgery, 2024, 5(2): 115-120
[1] Tarvonen-Schrder S, Niemi T, Hurme S, et al. Fall assessment in subacute inpatient stroke rehabilitation using clinical characteristics and the most preferred stroke severity and outcome measures[J]. Eur J Physiother, 2021. DOI: 10.1080/21679169.2021.1960600.
[2] LI Y C, LIN K C, CHEN C L, et al. A comparative efficacy study of robotic priming of bilateral approach in stroke rehabilitation[J]. Front Neurol, 2021. DOI: 10.3389/fneur.2021.658567.
[3] Lee S H, Cui J, Liu L, et al. An evidence-based intelligent method for upper-limb motor assessment via a VR training system on stroke rehabilitation[J]. IEEE Access, 2021. DOI: 10.1109/ACCESS.2021.3075778.
[4] SUN Z B, TIAN Y T, LI H Y, et al. A superlinear convergence feasible sequential quadratic programming algorithm for bipedal dynamic walking robot via discretemechanics and optimal control[J]. Optim Contr Appl Met, 2016, 37(6): 1139-1161.
[5] Guidali M, Duschau-Wicke A, Broggi S, et al. A robotic system to train activities of daily living in a virtual environment[J]. Med Biol Eng Comput, 2011, 49(10): 1213-1223.
[6] SUN Z B, SHI T, WEI L, et al. Noise-suppressing zeroing neural network for online solving timevarying nonlinear optimization problem: a control-based approach[J]. Neural Comput. Appl, 2020, 32(2): 11505- 11520.
[7] Perry J C, Rosen J, Burns S. Upper-limb powered exoskeleton design[J]. IEEE/ASME Trans. Mechatron, 2007, 12(4): 408-417.
[8] SUN Z B, LI F, ZHANG B C, et al. Different modified zeroing neural dynamics with inherent tolerance to noises for time-varying reciprocal problems: a controltheoretic approach[J]. Neurocomputing, 2019. DOI: 10.1016/j.neucom.2019.01.064.
[9] Mao Y, Agrawal S K. Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation[J]. IEEE Trans Rob, 2012, 28(4): 84-92.
[10] Perry J C, Rosen J. Design of a 7 degree-of-freedom upper-limb powered exoskeleton[J]. IEEE/RAS-EMBS International Conference on Biomedical Robotics & Biomechatronics, 2006, 12(4): 408-417.
[11] Kousidou S, Tsagarakis N G, Smith C, et al. Taskorientated biofeedback system for the rehabilitation of the upper limb[C]. IEEE 10th International Conference on Rehabilitation Robotics, IEEE Press, 2007: 376- 384.
[12] Sugar T G, He J H, Koeneman E J, et al. Design and control of rupert: a device for robotic upper extremity repetitive therapy[J]. IEEE Trans. Neural Syst. Rehabil. Eng, 2007, 15(3): 336-346.
[13] Balasubramanian S, Wei R H, Perez M, et al. RUPERT: an exoskeleton robot for assisting rehabilitation of arm functions[C].2008 Virtual Rehabilitation, IEEE Press, 2008, (1): 163-167.
[14] Klein S, Spencer S, Allington J, et al. Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton[J]. IEEE Trans. Robot, 2010, 26(4): 710-715.