中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

基于递归神经网络的人体下肢运动意图识别方法

A motion intention recognition method of human lower limbs based on recurrent neural network

作者:张鑫,李婉婷 ,陈岩 ,孙中波

Vol. 5 No. 2 Apr. 2024 DOI: 10.12180/j.issn.2096-7721.2024.02.002 发布日期:2024-07-10
关键词:表面肌电信号;主动运动;运动意图;下肢;归零神经网络;径向基函数神经网络

作者简介:

采集下肢两通道的表面肌电信号和相应的关节运动信息,对原始表面肌电信号进行预处理。建立基 于径向基函数神经网络的开环估计模型,以预处理后的表面肌电信号为输入,关节运动量为输出。在此基础上,归 零神经网络作为一种特殊的递归神经网络被应用到开环模型中,形成一个混合的闭环预测模型。实验结果表明,所 提出的闭环模型能够有效地消除开环模型的预测误差,进而能够更加准确地识别出人体的主动运动意图,为后续康 复机器人的人机交互系统提供有价值的参考。

In order to accurately identify the active motion intention of human lower limbs, the surface electromyography (sEMG) signals of the two channels and the corresponding joint motion information were collected, and the raw sEMG signals were preprocessed. Then an open-loop prediction model based on radial basis function neural network was established, using the preprocessed sEMG signal as the input and the joint motion information as the output. On this basis, as a special recurrent neural network, the zeroing neural network was exploited to the open-loop model to form a hybrid closed-loop prediction model. The experimental results indicated that the proposed closed-loop model can effectively eliminate the prediction error of the open-loop model, and it can more accurately identify the active motion intention of human lower limbs, which lays a reliable foundation for the subsequent human-computer interaction system of the rehabilitation robot.

稿件信息

收稿日期:2022-03-11  录用日期:2023-04-21 

Received Date: 2022-03-11  Accepted Date: 2023-04-21 

基金项目:国家自然科学基金面上项目(61873304,62173048);吉林省教育厅科学研究项目(JJKH20210745KJ) 

Foundation Item: National Natural Science Foundation of China(61873304, 62173048); Scientific Research Project of Department of Education of Jilin Province(JJKH20210745KJ) 

通讯作者:孙中波,Email:zhongbosun2012@163.com 

Corresponding Author: SUN Zhongbo, Email: zhongbosun2012@163.com 

引用格式:张鑫,李婉婷,陈岩,等 . 基于递归神经网络的人体下肢运动意图识别方法 [J].机器人外科学杂志(中英文),2024,5(2): 121-129. 

Citation: ZHANG X, LI W T, CHEN Y, et al. A motion intention recognition method of human lower limbs based on recurrent neural network[J]. Chinese Journal of Robotic Surgery, 2024, 5(2): 121-129

参考文献

[1] NIU C M, BAO Y, ZHUANG C, et al. Synergy-based FES for post-stroke rehabilitation of upper-limb motor functions [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(2): 256-264.

[2] WEN Y, LI M H, SI J, et al. Wearer-Prosthesis interaction for symmetrical gait: a study enabled by reinforcement learning prosthesis control [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(4): 904-913. 

[3] WEI D, LI Z J, WEI Q, et al. Human-in-the-loop control strategy of unilateral exoskeleton robots for gait rehabilitation [J]. IEEE Transactions on Cognitive and Developmental Systems, 2019, 13(1): 57-66. 

[4] YU X B, HE W, LI Y A, et al. Bayesian estimation of human impedance and motion intention for human-robot collaboration [J]. IEEE Transactions on Cybernetics, 2019, 51(4): 1822-1834.

[5] LIN M W, RUAN S J, TU Y W. A 3DCNN-LSTM hybrid framework for sEMG-based noises recognition in exercise [J]. IEEE Access, 2020. DOI: 10.1109/ ACCESS.2020.3021344. 

[6] Park S, Wan K C, Kim K. Training-Free Bayesian selfadaptive classification for sEMG pattern recognition including motion transition [J]. IEEE Transactions on Biomedical Engineering, 2019, 67(6): 1775-1786. 

[7] HU X H, ZENG H, SONG A G, et al. Robust continuous hand motion recognition using wearable array myoelectric sensor [J]. IEEE Sensors Journal, 2021, 21(18): 20596-20605. 

[8] XI X G, JIANG W J, HUA X, et al. Simultaneous and continuous estimation of joint angles based on surface electromyography state-space model [J]. IEEE Sensors Journal, 2021, 21(6): 8089-8099. 

[9] LI Z Y, ZHANG D H, ZHAO X G, et al. A temporally smoothed MLP regression scheme for continuous knee/ankle angles estimation by using multi-channel sEMG[J]. IEEE Access, 2020. DOI: 10.1109/ ACCESS.2020.2979008. 

[10] MA C F, GUO W Y, ZHANG H, et al. A novel and efficient feature extraction method for deep learning based continuous estimation [J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7341-7348.

[11] WANG W Q, HOU Z G, CHENG L, et al. Toward patients’ motion intention recognition: dynamics modeling and identification of iLeg—an llrr under motion constraints [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 46(7): 980-992. 

[12] WANG G, LIU Y B, SHI T, et al. A novel estimation approach of sEMG-based joint movements via RBF neural network [C]. 2019 Chinese Automation Congress (CAC), 2019. 

[13] CHAI Y Y, LIU K P, LI C X, et al. A novel method based on long short term memory network and discretetime zeroing neural algorithm for upper-limb continuous estimation using sEMG signals [J]. Biomedical Signal Processing and Control, 2021. DOI: 10.1016/ j.bspc.2021.102416. 

[14] JIN L, LI S, HU B. RNN models for dynamic matrix inversion: a control-theoretical perspective [J]. IEEE Transactions on Industrial Informatics, 2017, 14(1): 189-199. 

[15] JIN L, YAN J K, DU X J, et al. RNN for solving timevariant generalized Sylvester equation with applications to robots and acoustic source localization [J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6359-6369.

本期文章
[1] 《机器人完全不插管全胸腺切除术安全专家共识》解读(附视频 [2] 《腹腔镜或机器人辅助胰腺癌根治术中国专家共识(2022 年版)》解读 [3] 机器人手术护理配合中国专家共识(2024 版) [4] 机器人辅助腹腔镜手术治疗外阴癌中国专家共识(2024 版):附视频 [5] 机器人辅助腹腔镜手术治疗小儿复发性巨输尿管症一例并文献复习(附视频) [6] 机器人辅助胸腔镜治疗儿童隔离肺日间手术一例报道(附视频) [7] 达芬奇机器人辅助腹腔镜肾盂成形术治疗儿童马蹄肾并肾积水一例报道(附视频) [8] 机器人辅助下舌根恶性肿瘤扩大切除术:江西省首例报道(附视频) [9] 达芬奇机器人辅助动脉导管未闭结扎术:海南省首例报道(附视频) [10] 国产手术机器人辅助腹腔镜下宫颈癌根治术:国内首例报道 [11] 机器人辅助胃部分切除毕罗Ⅰ式吻合术治疗儿童胃丛状纤维黏液瘤并文献复习:全球首例报道(附视频) [12] 机器人辅助经腹膜后入路单孔腹腔镜下活体供肾切取术:全球首例报道(附视频) [13] 机器人辅助单孔胸腔镜肺联合亚段切除术:全球首例报道(附视频) [14] 手术室精准化护理在泌尿外科机器人辅助手术中的应用 [15] 口腔种植机器人辅助手术与传统种植手术的护理配合比较 [16] 机器人辅助完全腹腔镜下脾切断流术联合肝肿瘤切除术的护理配合 [17] 术中体位护理联合手术室低体温防护对机器人辅助根治性膀胱切除原位回肠新膀胱术患者舒适度及术后并发症的效果比较 [18] ADOPT 护理模式在机器人辅助腹腔镜下根治性膀胱 切除术中的应用效果 [19] 机器人辅助手术治疗脊柱骨折伴脊髓神经损伤的研究进展 [20] 显微手术机器人系统在眼底病中的应用现状及进展 [21] 新辅助化疗后机器人辅助与开腹手术治疗局部晚期 子宫颈癌术后生存影响因素的对比分析 [22] 机器人辅助盆腔廓清术在宫颈癌治疗中的应用 [23] 免举宫技术用于机器人辅助宫颈癌根治术的影响因素分析 [24] 老年缺血性脑卒中患者溶栓后采用手功能康复机器人 干预对上肢功能及握力的改善效果 [25] 脑卒中患者重返驾驶能力评估的研究现状及进展 [26] 肌电生物反馈治疗早期脑卒中偏瘫患者上肢功能障碍的疗效分析 [27] 可穿戴式足底压力监测系统的应用及进展 [28] 颈椎病新型智能牵引器的设计研发 [29] 张拉整体机器人构型与运动控制研究现状及进展 [30] 基于递归神经网络的人体下肢运动意图识别方法 [31] 六自由度上肢康复机器人机构设计及轨迹规划
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈