研究发现张拉整体结构存在于细胞骨架、肌肉 - 骨骼系统等生物体,并将其原理广泛应用于建筑、雕塑、 空间探测等工程结构中。张拉整体结构具有形态可调性、受力可控性、绳索抗拉性和结构轻质、结构自稳定等优势, 因此在机器人领域极具应用前景。而软体机器人作为一种新型、仿生、能与人安全交互的机器人,近年来成为力学、 材料学、医学、生物学等多学科交叉领域的研究热点之一。但是,要想实现灵活准确的运动、高效地承受外载、迅速 地适应环境等复杂特性和功能,张拉整体机器人在其构型、运动步态及控制研究等方面依旧面临着巨大挑战。本研究 选取张拉整体机器人的三大典型类别(棱柱形张拉整体机器人、球形张拉整体机器人及构型较复杂的张拉整体机器人), 对其构型、运动步态及控制的国内外相关研究现状和发展趋势进行综述,旨在为机器人的仿生学研究提供科学依据。
Studies has found that tensegrity structures exist in organisms like cytoskeleton and musculoskeletal system, which could be applied to engineering structure like architecture, sculpture and space exploration. Tensegrity structures have advantages of flexibility, controllability, tensile resistance, light in weight and autostability, which could be widely used in robots. Being a new, bionic and man-machine interactive system, soft robot has become one of the research hotspots in the interdisciplinary field that bridges mechanics, materials science, medicine and biology. However, it faces great challenges in accurate motion, high load and rapid adaption to environment. The configuration, motion gait and motion control of three typical tensegrity structures (prismatic tensegrity robots, spherical tensegrity robots and complex ones) were selected and discussed in this study, aiming to provide scientific bases for the bionics research of robots.
收稿日期:2022-06-14 录用日期:2023-08-10
Received Date: 2022-06-14 Accepted Date: 2023-08-10
基金项目:国家自然科学基金项目(61873304,62173048);吉林省科技发展计划项目(20200201291JC);长春市科技发展 计划项目(21ZY41)
Foundation Item: National Natural Science Foundation of China (61873304, 62173048); Science and Technology Development Plan Project of Jilin Province (20200201291JC); Science and Technology Development Plan Project of Changchun City (21ZY41)
通讯作者:段晓琴,Email:15204309769@163.com
Corresponding Author: DUAN Xiaoqin, Email: 15204309769@163.com
引用格式:曹心言,李润源,陈嘉郡,等 . 张拉整体机器人构型与运动控制研究现状及进展 [J]. 机器人外科学杂志(中英文), 2024,5(2):130-137.
Citation: CAO X Y, LI R Y, CHEN J J, et al. Current status and development of configuration and motion control of tensegrity robots [J]. Chinese Journal of Robotic Surgery, 2024, 5(2): 130-137.
[1] Emmerich D G. Self-tensioning spherical structures: singles and double layer spheroids [J]. Int J Space Structure, 1990, 3(4): 353-374.
[2] Pinaud J P, Masic M, Skelton R E. Path planning for the deployment of tensegrity structures [C] // Smart Structures and Materials. California: International Society for Optics and Photonics, 2003: 436-447.
[3] Pinaud J P, Solari S, Skelton R E. Deployment of a class 2 tensegrity boom [C] // Smart structures and materials. California: International Society for Optics and Photonics, 2004: 155-162.
[4] 田云峰 , 罗阿妮 , 刘贺平 . 4 杆张拉整体机器人单步 驱动方式分析 [J]. 制造业自动化 , 2019, 41(7): 93-97.
[5] Begey J, Vedrines M, Renaud P. Design of tensegrity-based manipulators: comparison of two approaches to respect a remote center of motion constraint[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1788-1795.
[6] Chen L H, Kim K, Tang E, et al. Soft Spherical tensegrity robot design using rod - centered actuation and control [J]. Mech Robot, 2017. DOI: 10.1115/1.4036014.
[7] Fraldi M, Palumbo S, Carotenuto A R, et al. Buckling soft tensegrities: fickle elasticity and configurational switching in living cells [J]. Journal of the Mechanics and Physics of Solids, 2019, 12(4): 299-324.
[8] Li W Y, Nabae H, Endo G, et al. New soft robot hand configuration with combined biotensegrity and thin artificial muscle [J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4345-4351.
[9] Yagi S, Kang S, Yu S, et al. Evaluation of shapechanging tensegrity structure robot for physical humanrobot interaction [C] // Proceedings of the IEEE International Conference on Advanced Robotics and its Social Impacts. Beijing, China: IEEE, 2019, 35(47): 20-24.
[10] Zappetti D, Jeong S H, Shintake J, et al. Phase Changing materials-based variable-stiffness tensegrity structures [J]. Soft Robotics, 2020, 7(3): 362-369.
[11] Boehler Q, Abdelaziz S, Vedrines M, et al. From modeling to control of a variable stiffness device based on a cable-driven tensegrity mechanism[J]. Mechanism and Machine Theory, 2017. DOI: 10.1016/ j.mechmachtheory.2016.09.015.
[12] WANG Z J, LI K, HE Q G, et al. A light-powered ultralight tensegrity robot with high deformability and load capacity [J]. Adv Mater, 2019, 31(7): 1-8.
[13] Chung Y S, Lee J H, Jang J H, et al. Jumping tensegrity robot based on torsionally prestrained SMA Springs [J]. ACS Appl Mater Interfaces, 2019, 11(43): 40793- 40799.
[14] Luo J L, Edmunds R, Rice F, et al. Tensegrity robot locomotion under limited sensory inputs via deep reinforcement learning [C] // Proceedings- IEEE International Conference on Robotics and Automation. Brisbane, Australia: IEEE, 2018: 6260-6267.
[15] Kim K, Agogino A K, Agogino A M. Rolling locomotion of cable-driven soft spherical tensegrity robots [J]. Soft Robot, 2020, 7(3): 346-361.
[16] Rieffel J, Mouret J B. Adaptive and resilient soft tensegrity robots [J]. Soft Robot, 2018, 5(3): 318-329.
[17] Surovik D, Wang K, Vespignani M, et al. Adaptive tensegrity locomotion: controlling a compliant icosahedron with symmetry-reduced reinforcement learning [J]. SAGE Journals, 2019, 40(1): 375-396.
[18] Littlefield Z, Surovik D, Vespignani M, et al. Kinodynamic planning for spherical tensegrity locomotion with effective gait primitives [J]. International Journal of Robotics Research, 2019, 38(12-13): 1442-1462.
[19] Cera B, Agogino A M. Multi-cable rolling locomotion with spherical tensegrities using model predictive control and deep learning [C] // IEEE International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018: 6595-6600.
[20] Vespignani M, Friesen J M, Sunspiral V, et al. Design of SUPERball v2, a compliant tensegrity robot for absorbing large impacts [C] // Proceedings of the IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 2865- 2871.
[21] Vespignani M, Ercolani C, Friesen J M, et al. Steerable Locomotion Controller for Six-strut Icosahedral Tensegrity Robots [C] // Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 2886- 2892.
[22] Zhang M, Geng X Y, Bruce K J, et al. Deep reinforcement learning for tensegrity robot locomotion [C] // Proceedings of the International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 634- 641.
[23] Böhm V, Kaufhold T, Zeidis I, et al. Dynamic analysis of a spherical mobile robot based on a tensegrity structure with two curved compressed members [J]. Archive of Applied Mechanics, 2017, 87(5): 853-864.
[24] Liu H P, Zhang J Y, Ohsaki M. New 3-bar prismatic tensegrity units [J]. Composite Structures, 2018. DOI: 10.1016/j.compstruct.2017.09.063.
[25] Baines R L, Booth J W, Kramer-Bottiglio R. Rolling soft membrane-driven tensegrity robots [J]. IEEE Robot Autom Lett, 2020. DOI: 10.1109/LRA.2020.3015185.
[26] Kaufhold T, Schale F, Böhm V, et al. Indoor Locomotion Experiments of a Spherical Mobile Robot Based on a Tensegrity Structure with Curved Compressed Members [C] // IEEE / ASME International Conference on Advanced Intelligent Mechatronics, AIM. Munich, Germany: IEEE, 2017: 523-528.
[27] Zappetti D, Arandes R, Ajanic E, et al. Variablestiffness tensegrity spine [J]. Smart Materials and Structures, 2020, 29(7): 10.
[28] Jung E, Ty L V, Cheney C, et al. Design, construction and validation of a proof of concept flexible-rigid mechanism emulating human leg behavior[J]. APPLIED SCIENCES-BASEL, 2021. DOI: 10.3390/ app11199351.
[29] Melnyk A, Pitti A. Synergistic control of a multisegments vertebral column robot based on tensegrity for postural balance[J]. Advanced Robotics, 2018, 32(15): 850-864.
[30] Realpe J R J, Aiche G, Abdelaziz S, et al. Asynchronous and decoupled control of the position and the stiffness of a spatial RCM tensegrity mechanism for needle manipulation [C]//2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. DOI: 10.1109/ICRA40945.2020.9197507.
[31] Lessard S, Pansodtee P, Robbins A, et al. A soft exosuit for flexible upper-extremity rehabilitation[J]. IEEE Transactions on Neural Systems And Rehabilitation Engineering, 2018, 26(8): 1604-1617.