中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

张拉整体机器人构型与运动控制研究现状及进展

Current status and development of configuration and motion control of tensegrity robots

作者:曹心言,李润源,陈嘉郡,李傢楷,易江,孙中波,段晓琴

Vol. 5 No. 2 Apr. 2024 DOI: 10.12180/j.issn.2096-7721.2024.02.003 发布日期:2024-07-10
关键词:张拉整体机器人;结构形态;运动控制

作者简介:

研究发现张拉整体结构存在于细胞骨架、肌肉 - 骨骼系统等生物体,并将其原理广泛应用于建筑、雕塑、 空间探测等工程结构中。张拉整体结构具有形态可调性、受力可控性、绳索抗拉性和结构轻质、结构自稳定等优势, 因此在机器人领域极具应用前景。而软体机器人作为一种新型、仿生、能与人安全交互的机器人,近年来成为力学、 材料学、医学、生物学等多学科交叉领域的研究热点之一。但是,要想实现灵活准确的运动、高效地承受外载、迅速 地适应环境等复杂特性和功能,张拉整体机器人在其构型、运动步态及控制研究等方面依旧面临着巨大挑战。本研究 选取张拉整体机器人的三大典型类别(棱柱形张拉整体机器人、球形张拉整体机器人及构型较复杂的张拉整体机器人), 对其构型、运动步态及控制的国内外相关研究现状和发展趋势进行综述,旨在为机器人的仿生学研究提供科学依据。

Studies has found that tensegrity structures exist in organisms like cytoskeleton and musculoskeletal system, which could be applied to engineering structure like architecture, sculpture and space exploration. Tensegrity structures have advantages of flexibility, controllability, tensile resistance, light in weight and autostability, which could be widely used in robots. Being a new, bionic and man-machine interactive system, soft robot has become one of the research hotspots in the interdisciplinary field that bridges mechanics, materials science, medicine and biology. However, it faces great challenges in accurate motion, high load and rapid adaption to environment. The configuration, motion gait and motion control of three typical tensegrity structures (prismatic tensegrity robots, spherical tensegrity robots and complex ones) were selected and discussed in this study, aiming to provide scientific bases for the bionics research of robots.

稿件信息

收稿日期:2022-06-14  录用日期:2023-08-10 

Received Date: 2022-06-14  Accepted Date: 2023-08-10 

基金项目:国家自然科学基金项目(61873304,62173048);吉林省科技发展计划项目(20200201291JC);长春市科技发展 计划项目(21ZY41) 

Foundation Item: National Natural Science Foundation of China (61873304, 62173048); Science and Technology Development Plan Project of Jilin Province (20200201291JC); Science and Technology Development Plan Project of Changchun City (21ZY41) 

通讯作者:段晓琴,Email:15204309769@163.com 

Corresponding Author: DUAN Xiaoqin, Email: 15204309769@163.com 

引用格式:曹心言,李润源,陈嘉郡,等 . 张拉整体机器人构型与运动控制研究现状及进展 [J]. 机器人外科学杂志(中英文), 2024,5(2):130-137. 

Citation: CAO X Y, LI R Y, CHEN J J, et al. Current status and development of configuration and motion control of tensegrity robots [J]. Chinese Journal of Robotic Surgery, 2024, 5(2): 130-137.

参考文献

[1] Emmerich D G. Self-tensioning spherical structures: singles and double layer spheroids [J]. Int J Space Structure, 1990, 3(4): 353-374. 

[2] Pinaud J P, Masic M, Skelton R E. Path planning for the deployment of tensegrity structures [C] // Smart Structures and Materials. California: International Society for Optics and Photonics, 2003: 436-447. 

[3] Pinaud J P, Solari S, Skelton R E. Deployment of a class 2 tensegrity boom [C] // Smart structures and materials. California: International Society for Optics and Photonics, 2004: 155-162. 

[4] 田云峰 , 罗阿妮 , 刘贺平 . 4 杆张拉整体机器人单步 驱动方式分析 [J]. 制造业自动化 , 2019, 41(7): 93-97. 

[5] Begey J, Vedrines M, Renaud P. Design of tensegrity-based manipulators: comparison of two approaches to respect a remote center of motion constraint[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1788-1795. 

[6] Chen L H, Kim K, Tang E, et al. Soft Spherical tensegrity robot design using rod - centered actuation and control [J]. Mech Robot, 2017. DOI: 10.1115/1.4036014. 

[7] Fraldi M, Palumbo S, Carotenuto A R, et al. Buckling soft tensegrities: fickle elasticity and configurational switching in living cells [J]. Journal of the Mechanics and Physics of Solids, 2019, 12(4): 299-324. 

[8] Li W Y, Nabae H, Endo G, et al. New soft robot hand configuration with combined biotensegrity and thin artificial muscle [J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4345-4351. 

[9] Yagi S, Kang S, Yu S, et al. Evaluation of shapechanging tensegrity structure robot for physical humanrobot interaction [C] // Proceedings of the IEEE International Conference on Advanced Robotics and its Social Impacts. Beijing, China: IEEE, 2019, 35(47): 20-24. 

[10] Zappetti D, Jeong S H, Shintake J, et al. Phase Changing materials-based variable-stiffness tensegrity structures [J]. Soft Robotics, 2020, 7(3): 362-369. 

[11] Boehler Q, Abdelaziz S, Vedrines M, et al. From modeling to control of a variable stiffness device based on a cable-driven tensegrity mechanism[J]. Mechanism and Machine Theory, 2017. DOI: 10.1016/ j.mechmachtheory.2016.09.015. 

[12] WANG Z J, LI K, HE Q G, et al. A light-powered ultralight tensegrity robot with high deformability and load capacity [J]. Adv Mater, 2019, 31(7): 1-8. 

[13] Chung Y S, Lee J H, Jang J H, et al. Jumping tensegrity robot based on torsionally prestrained SMA Springs [J]. ACS Appl Mater Interfaces, 2019, 11(43): 40793- 40799. 

[14] Luo J L, Edmunds R, Rice F, et al. Tensegrity robot locomotion under limited sensory inputs via deep reinforcement learning [C] // Proceedings- IEEE International Conference on Robotics and Automation. Brisbane, Australia: IEEE, 2018: 6260-6267. 

[15] Kim K, Agogino A K, Agogino A M. Rolling locomotion of cable-driven soft spherical tensegrity robots [J]. Soft Robot, 2020, 7(3): 346-361. 

[16] Rieffel J, Mouret J B. Adaptive and resilient soft tensegrity robots [J]. Soft Robot, 2018, 5(3): 318-329.

[17] Surovik D, Wang K, Vespignani M, et al. Adaptive tensegrity locomotion: controlling a compliant icosahedron with symmetry-reduced reinforcement learning [J]. SAGE Journals, 2019, 40(1): 375-396. 

[18] Littlefield Z, Surovik D, Vespignani M, et al. Kinodynamic planning for spherical tensegrity locomotion with effective gait primitives [J]. International Journal of Robotics Research, 2019, 38(12-13): 1442-1462. 

[19] Cera B, Agogino A M. Multi-cable rolling locomotion with spherical tensegrities using model predictive control and deep learning [C] // IEEE International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018: 6595-6600. 

[20] Vespignani M, Friesen J M, Sunspiral V, et al. Design of SUPERball v2, a compliant tensegrity robot for absorbing large impacts [C] // Proceedings of the IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 2865- 2871. 

[21] Vespignani M, Ercolani C, Friesen J M, et al. Steerable Locomotion Controller for Six-strut Icosahedral Tensegrity Robots [C] // Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018: 2886- 2892. 

[22] Zhang M, Geng X Y, Bruce K J, et al. Deep reinforcement learning for tensegrity robot locomotion [C] // Proceedings of the International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 634- 641. 

[23] Böhm V, Kaufhold T, Zeidis I, et al. Dynamic analysis of a spherical mobile robot based on a tensegrity structure with two curved compressed members [J]. Archive of Applied Mechanics, 2017, 87(5): 853-864. 

[24] Liu H P, Zhang J Y, Ohsaki M. New 3-bar prismatic tensegrity units [J]. Composite Structures, 2018. DOI: 10.1016/j.compstruct.2017.09.063. 

[25] Baines R L, Booth J W, Kramer-Bottiglio R. Rolling soft membrane-driven tensegrity robots [J]. IEEE Robot Autom Lett, 2020. DOI: 10.1109/LRA.2020.3015185. 

[26] Kaufhold T, Schale F, Böhm V, et al. Indoor Locomotion Experiments of a Spherical Mobile Robot Based on a Tensegrity Structure with Curved Compressed Members [C] // IEEE / ASME International Conference on Advanced Intelligent Mechatronics, AIM. Munich, Germany: IEEE, 2017: 523-528. 

[27] Zappetti D, Arandes R, Ajanic E, et al. Variablestiffness tensegrity spine [J]. Smart Materials and Structures, 2020, 29(7): 10. 

[28] Jung E, Ty L V, Cheney C, et al. Design, construction and validation of a proof of concept flexible-rigid mechanism emulating human leg behavior[J]. APPLIED SCIENCES-BASEL, 2021. DOI: 10.3390/ app11199351. 

[29] Melnyk A, Pitti A. Synergistic control of a multisegments vertebral column robot based on tensegrity for postural balance[J]. Advanced Robotics, 2018, 32(15): 850-864. 

[30] Realpe J R J, Aiche G, Abdelaziz S, et al. Asynchronous and decoupled control of the position and the stiffness of a spatial RCM tensegrity mechanism for needle manipulation [C]//2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. DOI: 10.1109/ICRA40945.2020.9197507. 

[31] Lessard S, Pansodtee P, Robbins A, et al. A soft exosuit for flexible upper-extremity rehabilitation[J]. IEEE Transactions on Neural Systems And Rehabilitation Engineering, 2018, 26(8): 1604-1617.

本期文章
[1] 《机器人完全不插管全胸腺切除术安全专家共识》解读(附视频 [2] 《腹腔镜或机器人辅助胰腺癌根治术中国专家共识(2022 年版)》解读 [3] 机器人手术护理配合中国专家共识(2024 版) [4] 机器人辅助腹腔镜手术治疗外阴癌中国专家共识(2024 版):附视频 [5] 机器人辅助腹腔镜手术治疗小儿复发性巨输尿管症一例并文献复习(附视频) [6] 机器人辅助胸腔镜治疗儿童隔离肺日间手术一例报道(附视频) [7] 达芬奇机器人辅助腹腔镜肾盂成形术治疗儿童马蹄肾并肾积水一例报道(附视频) [8] 机器人辅助下舌根恶性肿瘤扩大切除术:江西省首例报道(附视频) [9] 达芬奇机器人辅助动脉导管未闭结扎术:海南省首例报道(附视频) [10] 国产手术机器人辅助腹腔镜下宫颈癌根治术:国内首例报道 [11] 机器人辅助胃部分切除毕罗Ⅰ式吻合术治疗儿童胃丛状纤维黏液瘤并文献复习:全球首例报道(附视频) [12] 机器人辅助经腹膜后入路单孔腹腔镜下活体供肾切取术:全球首例报道(附视频) [13] 机器人辅助单孔胸腔镜肺联合亚段切除术:全球首例报道(附视频) [14] 手术室精准化护理在泌尿外科机器人辅助手术中的应用 [15] 口腔种植机器人辅助手术与传统种植手术的护理配合比较 [16] 机器人辅助完全腹腔镜下脾切断流术联合肝肿瘤切除术的护理配合 [17] 术中体位护理联合手术室低体温防护对机器人辅助根治性膀胱切除原位回肠新膀胱术患者舒适度及术后并发症的效果比较 [18] ADOPT 护理模式在机器人辅助腹腔镜下根治性膀胱 切除术中的应用效果 [19] 机器人辅助手术治疗脊柱骨折伴脊髓神经损伤的研究进展 [20] 显微手术机器人系统在眼底病中的应用现状及进展 [21] 新辅助化疗后机器人辅助与开腹手术治疗局部晚期 子宫颈癌术后生存影响因素的对比分析 [22] 机器人辅助盆腔廓清术在宫颈癌治疗中的应用 [23] 免举宫技术用于机器人辅助宫颈癌根治术的影响因素分析 [24] 老年缺血性脑卒中患者溶栓后采用手功能康复机器人 干预对上肢功能及握力的改善效果 [25] 脑卒中患者重返驾驶能力评估的研究现状及进展 [26] 肌电生物反馈治疗早期脑卒中偏瘫患者上肢功能障碍的疗效分析 [27] 可穿戴式足底压力监测系统的应用及进展 [28] 颈椎病新型智能牵引器的设计研发 [29] 张拉整体机器人构型与运动控制研究现状及进展 [30] 基于递归神经网络的人体下肢运动意图识别方法 [31] 六自由度上肢康复机器人机构设计及轨迹规划
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈