中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

可穿戴式足底压力监测系统的应用及进展

Application and progress of wearable foot pressure monitor system

作者:程翔,郭瑞,伍晓明,潘钰

Vol. 5 No. 2 Apr. 2024 DOI: 10.12180/j.issn.2096-7721.2024.02.005 发布日期:2024-07-10
关键词:足底压力;可穿戴系统;人工智能;临床应用

作者简介:

可穿戴式足底压力监测系统(WFPMS)是近年来热门的足底压力分析手段。本研究重点介绍了目前 WFPMS 的常见类型及在其医疗健康、人体生物力学、日常生活监测等领域的应用,并对其发展方向及局限性进行 了讨论,提出了基于可穿戴式技术与人工智能相结合的应用展望。

WFPMS (Wearable Foot Pressure Monitor System) is a popular method to analyze foot pressure in recent years. The common types of WFPMS and its applications in medical and health care, human biomechanics, daily life monitoring and other fields were introduced and the possible development direction and limitations of WFPMS were discussed, and the possible clinical application based on the combination of wearable technology and artificial intelligence were prospected in this paper. Key words  Foot Pressure; Wearable System; Artificial Intelligence; Clinical Application

稿件信息

收稿日期:2022-06-10  录用日期:2023-07-08 

Received Date: 2022-06-10  Accepted Date: 2023-07-08 

基金项目:首都医学发展科研基金(2022-2Z-2242);清华大学精准医学科研计划(12020B7049) 

Foundation Item: Capital Medical Development Research Fund(2022-2Z-2242); Precision Medicine Research Program of Tsinghua University(12020B7049) 

通讯作者:潘钰,Email:panyu@btch.edu.cn 

Corresponding Author: PAN Yu, Email: panyu@btch.edu.cn 

引用格式:程翔,郭瑞,伍晓明,等 . 可穿戴式足底压力监测系统的应用及进展 [J]. 机器人外科学杂志(中英文),2024,5(2): 143-147. 

Citation: CHENG X, GUO R, WU X M, et al. Application and progress of wearable foot pressure monitor system[J]. Chinese Journal of Robotic Surgery, 2024, 5(2): 143-147.

参考文献

[1] LIN S, TAO H, WANG Y Y, et al. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array[C]// Bioinformatics and Bioengineering. IEEE, 2010. 

[2] Zulkifli S S, Loh W P. A state-of-the-art review of foot pressure [J]. Foot Ankle Surg, 2020, 26(1): 25-32. 

[3] Abdul R A H, Zayegh A, Begg R K, et al. Foot plantar pressure measurement system: a review [J]. Sensors, 2012, 12(7): 9884-9912. 

[4] 陈足娇 , 张睿 , 卓雯雯 , 等 . 可穿戴足底压力监测 系统研究进展 [J]. 纺织学报 , 2021. DOI.10.13475/ j.fzxb.20200806008. 

[5] Song K, Chambers A R. Diabetic Foot Care [M]. StatPearls. Treasure Island (FL): StatPearls Publishing LLC, 2022. 

[6] 孙子林 , 陆军 , 徐治 , 等 . 糖尿病足基层筛查与防治 专家共识 [J]. 中国糖尿病杂志 , 2019, 27(06): 401-407. 

[7] Chatwin K E, Abbott C A, Boulton A J M, et al. The role of foot pressure measurement in the prediction and prevention of diabetic foot ulceration-a comprehensive review [J]. Diabetes Metab Res Rev, 2020. DOI.10. 1002/dmrr.3258. 

[8] WANG D, OUYANG J, ZHOU P, et al. A novel low-cost wireless footwear system for monitoring diabetic foot patients [J]. IEEE Trans Biomed Circuits Syst, 2021, 15(1): 43-54. 

[9] 许鸿本 , 赵国睿 , 赵文 , 等 . 糖尿病足预警系统研 究进展 [J]. 中国糖尿病杂志 , 2022, 30(3): 231-233. 

[10] Jones P, Davies M J, Khunti K, et al. In-shoe pressure thresholds for people with diabetes and neuropathy at risk of ulceration: a systematic review [J]. J Diabetes Complications, 2021, 35(3): 107815. 

[11] 黄玲晓 . 糖尿病人足底压力分布研究及其临床应 用 [D]. 天津科技大学 , 2017. 

[12] Yavuz M, Ersen A, Monga A, et al. Temperature-and pressure-regulating insoles for prevention of diabetic foot ulcers [J]. J Foot Ankle Surg, 2020, 59(4): 685-688. 

[13] Nouman M, Dissaneewate T, Leelasamran W, et al. The insole materials influence the plantar pressure distributions in diabetic foot with neuropathy during different walking activities [J]. Gait & Posture, 2019, 74(5): 154-161. 

[14] Nyska M, Shabat S, Simkin A, et al. Dynamic force distribution during level walking under the feet of patients with chronic ankle instability [J]. British journal of sports medicine, 2003, 37(6): 495-497. 

[15] 侯宗辰 , 敖英芳 , 胡跃林 , 等 . 慢性踝关节不稳患 者足底压力特征及相关因素分析 [J]. 北京大学学报 (医学版), 2021, 53(2): 279-285. 

[16] Naito Y, Kimura Y, Hashimoto T, et al. Quantification of gait using insole type foot pressure monitor : clinical application for chronic hemiplegia[J]. J Uoeh, 2014, 36(1): 41-48. 

[17] Hillier S, Lai M S. Insole plantar pressure measurement during quiet stance post stroke [J]. Topics in Stroke Rehabilitation, 2016, 16(3): 189-195. 

[18] Edgar S, Swyka T, Fulk G, et al. Wearable shoe-based device for rehabilitation of stroke patients [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2010. DOI: 10.1109/ IEMBS.2010.5627577. 

[19] Choi H S, Choi H, Kang S, et al. Change in center of pressure progression in the foot provides clues for functional improvement of the more affected lower limb during post-stroke gait rehabilitation [J]. Am J Phys Med Rehabil, 2021, 100(3): 229-234. 

[20] Echigoya K, Okada K, Wakasa M, et al. Changes to foot pressure pattern in post-stroke individuals who have started to walk independently during the convalescent phase [J]. Gait Posture, 2021. DOI: 10.1016/j.gaitpost.2021.09.181. 

[21] Yamamoto T, Hoshino Y, Kanzaki N, et al. Plantar pressure sensors indicate women to have a significantly higher peak pressure on the hallux, toes, forefoot, and medial of the foot compared to men [J]. J Foot Ankle Res, 2020, 13(1): 40. 

[22] Jasiewicz B, Klimiec E, Motek M, et al. Quantitative analysis of foot plantar pressure during walking [J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2019. DOI: 10.12659/MSM.914915. 

[23] HUANG Y P, PENG H T, WANG X, et al. The arch support insoles show benefits to people with flatfoot on stance time, cadence, plantar pressure and contact area [J]. PLoS One, 2020, 15(8): e0237382. 

[24] Bousie J A, Blanch P, Mcpoil T G, et al. Hardness and posting of foot orthoses modify plantar contact area, plantar pressure, and perceived comfort when cycling [J]. J Sci Med Sport, 2018, 21(7): 691-696. 

[25] Matijevich E S, Scott L R, Volgyesi P, et al. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running[J]. Hum Mov Sci, 2020. DOI: 10.1016/ j.humov.2020.102690. 

[26] Mohan D M, Khandoker A H, Wasti S A, et al. Assessment methods of post-stroke gait: a scoping review of technology-driven approaches to gait characterization and analysis [J]. Front Neurol, 2021. DOI: 10.3389/fneur.2021.650024. 

[27] 韩昌报 , 王嫚琪 , 黄建华 , 等 . 摩擦纳米发电技术研 究进展及其潜在应用 [J]. 北京工业大学学报 , 2020, 46(10): 1103-1127.

本期文章
[1] 《机器人完全不插管全胸腺切除术安全专家共识》解读(附视频 [2] 《腹腔镜或机器人辅助胰腺癌根治术中国专家共识(2022 年版)》解读 [3] 机器人手术护理配合中国专家共识(2024 版) [4] 机器人辅助腹腔镜手术治疗外阴癌中国专家共识(2024 版):附视频 [5] 机器人辅助腹腔镜手术治疗小儿复发性巨输尿管症一例并文献复习(附视频) [6] 机器人辅助胸腔镜治疗儿童隔离肺日间手术一例报道(附视频) [7] 达芬奇机器人辅助腹腔镜肾盂成形术治疗儿童马蹄肾并肾积水一例报道(附视频) [8] 机器人辅助下舌根恶性肿瘤扩大切除术:江西省首例报道(附视频) [9] 达芬奇机器人辅助动脉导管未闭结扎术:海南省首例报道(附视频) [10] 国产手术机器人辅助腹腔镜下宫颈癌根治术:国内首例报道 [11] 机器人辅助胃部分切除毕罗Ⅰ式吻合术治疗儿童胃丛状纤维黏液瘤并文献复习:全球首例报道(附视频) [12] 机器人辅助经腹膜后入路单孔腹腔镜下活体供肾切取术:全球首例报道(附视频) [13] 机器人辅助单孔胸腔镜肺联合亚段切除术:全球首例报道(附视频) [14] 手术室精准化护理在泌尿外科机器人辅助手术中的应用 [15] 口腔种植机器人辅助手术与传统种植手术的护理配合比较 [16] 机器人辅助完全腹腔镜下脾切断流术联合肝肿瘤切除术的护理配合 [17] 术中体位护理联合手术室低体温防护对机器人辅助根治性膀胱切除原位回肠新膀胱术患者舒适度及术后并发症的效果比较 [18] ADOPT 护理模式在机器人辅助腹腔镜下根治性膀胱 切除术中的应用效果 [19] 机器人辅助手术治疗脊柱骨折伴脊髓神经损伤的研究进展 [20] 显微手术机器人系统在眼底病中的应用现状及进展 [21] 新辅助化疗后机器人辅助与开腹手术治疗局部晚期 子宫颈癌术后生存影响因素的对比分析 [22] 机器人辅助盆腔廓清术在宫颈癌治疗中的应用 [23] 免举宫技术用于机器人辅助宫颈癌根治术的影响因素分析 [24] 老年缺血性脑卒中患者溶栓后采用手功能康复机器人 干预对上肢功能及握力的改善效果 [25] 脑卒中患者重返驾驶能力评估的研究现状及进展 [26] 肌电生物反馈治疗早期脑卒中偏瘫患者上肢功能障碍的疗效分析 [27] 可穿戴式足底压力监测系统的应用及进展 [28] 颈椎病新型智能牵引器的设计研发 [29] 张拉整体机器人构型与运动控制研究现状及进展 [30] 基于递归神经网络的人体下肢运动意图识别方法 [31] 六自由度上肢康复机器人机构设计及轨迹规划
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈