汽车驾驶已经成为人们日常生活中不可或缺的部分,也是脑卒中患者重返社会的最重要能力之一。 安全驾驶和驾驶训练的基础是对驾驶能力的准确评估。根据国外研究,脑卒中后的驾驶能力评估主要包括路测、心 理测验和驾驶模拟。目前,我国不仅缺少脑卒中患者安全驾驶的评定标准,也缺乏明确、统一的评估方案。近年来, 医工结合技术和计算机技术的发展为驾驶能力的客观化、精准化、智能化评估提供了可能。本文旨在对脑卒中患者 重返驾驶的评估研究及进展情况进行综述。
Driving has become an integral part of people’s daily lives now, and it is also one of the most important abilities for stroke patients to return to society. Safe driving and driving training are based on accurate assessment of driving ability. According to foreign researches, the assessment of driving ability after stroke includes on-road tests, psychological tests and driving simulation. China is not only short of assessment criteria for safe driving on stroke patients, but also lacks well-defined and uniform assessment methods. With the development of medicine-engineering interdisciplinary and computer technology, it is possible to assess driving ability objectively, accurately and intelligently. The current situations and progress of driving ability assessment for stroke patients were reviewed in this paper.
收稿日期:2021-12-27 录用日期:2023-01-24
Received Date: 2021-12-27 Accepted Date: 2023-01-24
基金项目:吉林省自然科学基金学科布局项目(20210101359JC);吉林大学白求恩计划项目(2020B41);吉林大学 2020 年 创新创业教育课程建设项目(CXCYA202029)
Foundation Item: Disciplinary Layout Project of the Natural Science Foundation of Jilin Province (20210101359JC); Jilin University Bethune Project (2020B41); Innovation and Entrepreneurship Education Curriculum Construction Project of Jilin University in 2020 (CXCYA202029)
通讯作者:段晓琴,Email:15204309769@163.com
Corresponding Author: DUAN Xiaoqin, Email: 15204309769@163.com
引用格式:张琪,刘欣,郑斌,等 . 脑卒中患者重返驾驶能力评估的研究现状及进展 [J]. 机器人外科学杂志(中英文),2024,5 (2):153-157.
Citation: ZHANG Q, LIU X, ZHENG B, et al. Current status and progress of the assessment on returning to driving in stroke patients[J]. Chinese Journal of Robotic Surgery, 2024, 5(2): 153-157
[1] Virani S S, Alonso A, Benjamin E J, et al. Heart Disease and Stroke Statistics-2020 Update: a report from the American Heart Association[J]. Circulation, 2020, 141(9): e139-e596.
[2] 王陇德 , 王金环 , 彭斌 , 等 . 《中国脑卒中防治报 告 2016》概要 [J]. 中国脑血管病杂志 , 2017, 14(4): 217-224.
[3] 刘丽旭 , 张通 , 何静杰 , 等 . 运用 ICF 核心分类组合 脑卒中 ( 综合版 ) 评价脑卒中患者功能状况的多中 心研究 [J]. 中国康复理论与实践 , 2019, 25(7): 816- 821.
[4] Ouellet M A, Rochette A, Miéville C, et al. Portrait of driving practice following a mild stroke: a secondary analysis of a chart audit[J]. Top Stroke Rehabil, 2020, 27(3): 181-189.
[5] KU F L, CHEN W C, CHEN M D, et al. The determinants of motorized mobility scooter driving ability after a stroke[J]. Disabil Rehabil, 2021, 43(25): 3701-3710.
[6] Shimonaga K, Hama S, Tsuji T, et al. The right hemisphere is important for driving-related cognitive function after stroke[J]. Neurosurg Rev, 2021, 44(2): 977-985.
[7] Olaleye O A. Motor function, community reintegration and quality of life in stroke survivors with pre-stroke driving history[J]. Afr J Med Med Sci, 2018, 47(4): 391-397.
[8] Tiu J, Harmon A C, Stowe J D, et al. Feasibility and validity of a low-cost racing simulator in driving assessment after stroke[J]. Geriatrics (Basel), 2020, 5(2): 35.
[9] Frith J, James C, Hubbard I, et al. Australian health professionals’ perceptions about the management of return to driving early after stroke: a mixed methods study[J]. Top Stroke Rehabil, 2021, 28(3): 198-206.
[10] Yu S, Muhunthan J, Lindley R, et al. Driving in stroke survivors aged 18-65 years: the psychosocial outcomes in stroke (POISE) cohort study[J]. Int J Stroke, 2016, 11(7): 799-806.
[11] Burns S P , Schwartz J K , Scott S L , et al. Interdisciplinary Approaches to facilitate return to driving and return to work in mild stroke: a position paper[J]. Arch Phys Med Rehabil, 2018, 99(11): 2378- 2388.
[12] Allart E, Daveluy W, Delahaye R, et al. Simulator-based driving assessment of brain-injured patients in real life practice[J]. Annals of Physical and Rehabilitation Medicine, 2017. DOI: 10.1016/j.rehab.2017.07.237.
[13] Jeon S, Son J, Park M, et al. Driving-PASS: an automatic driving performance assessment system for stroke drivers based on ANN and SVM[C]: IEEE, 2018. DOI: 10.1109/ICARCV.2018.8581177.
[14] Sawada T, Tomori K, Hamana H, et al. Reliability and validity of on-road driving tests in vulnerable adults: a systematic review[J]. Int J Rehabil Res, 2019, 42(4): 289-299.
[15] Choi S Y, Lee J S, Oh Y J. Cut-off point for the trail making test to predict unsafe driving after stroke[J]. J Phys Ther Sci, 2016, 28(7): 2110-2113.
[16] Wolfe P L, Lehockey K A. Neuropsychological assessment of driving capacity[J]. Arch Clin Neuropsychol, 2016, 31(6): 517-529.
[17] Unsworth C A, Baker A, Lannin N, et al. Predicting fitness-to-drive following stroke using the Occupational Therapy-Driver Off Road Assessment Battery[J]. Disabil Rehabil, 2019, 41(15): 1797-1802.
[18] Mckay A, Liew C, Schönberger M, et al. Predictors of the on-road driving assessment after traumatic brain injury: comparing cognitive tests, injury factors, and demographics[J]. J Head Trauma Rehabil, 2016, 31(6): E44-52.
[19] Sakamaki K, Nishizawa S, Katsuki M, et al. On-road driving assessment in a driving school course and the results of a cognitive function test after stroke in a depopulated rural area in Japan: case series of eight patients[J]. Cureus, 2021, 13(5): e15293.
[20] Motnikar L, Stojmenova K, Štaba U, et al. Exploring driving characteristics of fit-and unfit-to-drive neurological patients: a driving simulator study[J]. Traffic Inj Prev, 2020, 21(6): 359-364.
[21] Imhoff S, Lavallière M, Teasdale N, et al. Driving assessment and rehabilitation using a driving simulator in individuals with traumatic brain injury: a scoping review[J]. NeuroRehabilitation, 2016, 39(2): 239-251.
[22] Herne R, Rai S, Shiratuddin M F, et al. Using a driving simulator to improve driving awareness in stroke survivors: a pilot study[J]. J Fundam Appl Sci, 2018, 10(2S): 201-214.
[23] Urlings J H J, Cuenen A, Brijs T, et al. Aiding medical professionals in fitness-to-drive screenings for elderly drivers: development of an office-based screening tool[J]. Int Psychogeriatr, 2018, 30(8): 1211-1225.
[24] 徐玉明 , 范红哲 , 李一 . 神经系疾病既往史者的 健康体质评定与驾驶许可 [J]. 北京体育大学学报 , 2006, 29(11): 1513-1515.
[25] Mcnamara A, John Barr C, Bond M J, et al. A pilot study: Can the UFOV assessment be used as a repeated measure to determine timing of on-road assessment in stroke?[J]. Aust Occup Ther J, 2019, 66(1): 5-12.
[26] KU F L, CHEN W C, CHEN T W. Reaction time and visual field are the most relevant factors of driving ability of motorized mobility scooters after stroke[J]. Annals of Physical and Rehabilitation Medicine, 2018. DOI: 10.1016/j.rehab.2018.05.427.
[27] Patel P, Alam T, Tracy B L, et al. Impaired force control contributes to car steering dysfunction in chronic stroke[J]. Disabil Rehabil, 2021, 43(14): 1948-1954.
[28] Mcintire L K, Mckinley R A, Goodyear C, et al. Detection of vigilance performance using eye blinks[J]. Appl Ergon, 2014, 45(2): 354-362.
[29] Lodha N, Casamento-Moran A, Christou E A. Motor control training enhances reactive driving in stroke— a pilot study[J]. Converging Clinical and Engineering Research on Neurorehabilitation II, 2017. DOI: 10.1007/978-3-319-46669-9_172.
[30] Ooba H, Inoue T, Hirano M, et al. Management of rehabilitation for resumption of post-stroke taxi driving[J]. Journal of the Japanese Council of Traffic Science, 2017, 16(2): 46-54.
[31] Lesmana I P D, Widiawan B, Hartadi D R. Manipulation of virtual environment to examine perception and vision aspects of individuals post-stroke when driving VRAC simulator[J]. Journal of Physics. Conference series, 2020, 1569(2): 22010.
[32] 许伟豪 .基于虚拟驾驶体验的康复训练与评估系统 [D]. 广东工业大学 , 2017.
[33] Sætren G B, Lindheim C, Skogstad M R, et al. Simulator versus traditional training: a comparative study of night driving training[J]. Proc Hum Factors Ergon Soc Annu Meet, 2019, 63(1): 1669-1673.
[34] Dimech-Betancourt B, Ross P E, Ponsford J L, et al. The development of a simulator-based intervention to rehabilitate driving skills in people with acquired brain injury[J]. Disabil Rehabil Assist Technol, 2021, 16(3): 289-300.
[35] Blane A, Falkmer T, Lee H C, et al. Investigating cognitive ability and self-reported driving performance of post-stroke adults in a driving simulator[J]. Top Stroke Rehabil, 2018, 25(1): 44-53.
[36] Jraidi I, Khedher A B, Chaouachi M, et al. Assessing students’ clinical reasoning using gaze and EEG features[J] International Conference on Intelligent Tutoring Systems, 2019. DOI: 10.1007/978-3-030- 22244-4_7.
[37] Gartz R, Dickerson A, Radloff J. Effectiveness of visual scanning compensatory training after stroke[J]. The American Journal of Occupational Therapy, 2019, 73(4_ Supplement_1): 7311520398p1.