中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

显微手术机器人系统在眼底病中的应用现状及进展

Current status and progress of microsurgical robotic system in fundus disease

作者:王昞,陈佩,雍红芳,张红兵

Vol. 5 No. 2 Apr. 2024 DOI: 10.12180/j.issn.2096-7721.2024.02.012 发布日期:2024-07-10
关键词:显微外科;手术机器人;眼底病;光学相干断层扫描;光纤布拉格光栅微触觉感受器;人工智能

作者简介:

眼科手术具有精密性高、操作空间小、学习曲线长等特点,对手术机器人操作系统要求较高。随着 机械学、生物力学及计算机学等多学科的发展,显微手术机器人系统在眼科中的应用将越来越广泛,可以解决人手 生理性震颤、心理因素波动、长时间手术身体疲劳等生理局限,未来将大大提高眼科手术的成功率。本文就国内外 显微手术机器人系统在眼底病手术中的应用和进展做以综述,并对关键技术进行分析。

Ophthalmic surgery is characterized by high precision, small operating space and long learning curve, which has a higher requirement on robotic surgical system. With the development of mechanics, biomechanics and computer science, microsurgical robotic system has been used in various ophthalmic surgeries. It can reduce the physiological tremor of surgeons, relieve fatigue of surgeons caused by long time of operation and improve surgical stability and accuracy, which could greatly improve the success rate of surgery. The application and progress of microsurgical robotic system in eye surgery at home and abroad was reviewed, and the key technologies were analyzed in this paper.

稿件信息

收稿日期:2022-10-20  录用日期:2023-07-03 

Received Date: 2022-10-20  Accepted Date: 2023-07-03 

基金项目:陕西省自然科学基础研究计划重点项目(2021JZ-60) 

Foundation Item: Key Project of Natural Science Basic Research Plan in Shaanxi Province (2021JZ-60) 

通讯作者:张红兵,Email:zhanghongbing01@163.com 

Corresponding Author: ZHANG Hongbing, Email: zhanghongbing01@163.com

引用格式:王昞,陈佩,雍红芳,等 . 显微手术机器人系统在眼底病中的应用现状及进展 [J]. 机器人外科学杂志(中英文), 2024,5(2):186-193. 

Citation: WANG B, CHEN P, YONG H F, et al. Current status and progress of microsurgical robotic system in fundus disease[J]. Chinese Journal of Robotic Surgery, 2024, 5(2): 186-193.

参考文献

[1] Pollack J S, Sabherwal N. Small gauge vitrectomy: operative techniques[J]. Curr Opin Ophthalmol, 2019, 30(3): 159-164. 

[2] Molaei A, Abedloo E, de Smet M D, et al. Toward the art of robotic-assisted vitreoretinal surgery[J]. J Ophthalmic Vis Res, 2017, 12(2): 212-218. 

[3] Becker B C, Yang S, Maclachlan R A, et al. Towards vision-based control of a handheld micromanipulator for retinal cannulation in an eyeball phantom[C]. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron, 2012: 44-49. 

[4] Üneri A, Balicki M A, Handa J, et al. New steady-hand eye robot with micro-force sensing for vitreoretinal surgery[C]. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron, 2010: 814-819. 

[5] Gonenc B, Tran N, Gehlbach P, et al. Robot-assisted retinal vein cannulation with force-based puncture detection: Micron vs. the steady-hand eye robot[C]. Annu Int Conf IEEE Eng Med Biol Soc, 2016: 5107- 5111. 

[6] Gonenc B, Patel N, Iordachita I. Evaluation of a force-sensing handheld robot for assisted retinal vein cannulation[C]. Annu Int Conf IEEE Eng Med Biol Soc, 2018: 1-5.

[7] Hubschman J P, Bourges J L, Choi W, et al. ‘The Microhand’: a new concept of micro-forceps for ocular robotic surgery[J]. Eye (Lond), 2010, 24(2): 364-367. 

[8] Chatzipirpiridis G, Ergeneman O, Pokki J, et al. Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications[J]. Adv Healthc Mater, 2015, 4(2): 209-214. 

[9] XIAO J J, WU Q Y, SUN D H, et al. Classifications and functions of vitreoretinal surgery assisted robots-a review of the state of the art[C]. 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), 2019: 474-484. 

[10] Wilson J T, Gerber M J, Prince S W, et al. Intraocular robotic interventional surgical system (IRISS): Mechanical design, evaluation, and master-slave manipulation[J]. Int J Med Robot, 2018, 14(1): 1-12. 

[11] Yu H R, Shen J H, Joos K M, et al. Calibration and integration of B-mode optical coherence tomography for assistive control in robotic microsurgery[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2613-2623. 

[12] Fujie M G, Zhang B. State-of-the-art of intelligent minimally invasive surgical robots[J]. Front Med, 2020, 14(4): 404-416. 

[13] Edwards T L, Xue K, Meenink H C M, et al. First-inhuman study of the safety and viability of intraocular robotic surgery[J]. Nat Biomed Eng, 2018, 2(6): 649- 656. 

[14] Chammas J, Sauer A, Pizzuto J, et al. Da Vinci Xi robotassisted penetrating keratoplasty[J]. Transl Vis Sci Technol, 2017, 6(3): 1-7. 

[15] 肖晶晶 , 杨洋 , 沈丽君 , 等 . 视网膜血管搭桥手术 机器人系统的研究 [J]. 机器人 , 2014, 36(3): 293- 299. 

[16] 陈亦棋 , 张超特 , 洪明胜 , 等 . 辅助玻璃体视网膜 显微手术机器人系统的研制及应用 [J]. 中华实验眼 科杂志 , 2017, 35(1): 38-41. 

[17] 邬如靖 , 韩少峰 , 广晨汉 , 等 . 具有微力感知的眼 科手术器械的设计与实现 [J]. 机械工程学报 , 2020, 56(17): 12-19. 

[18] 周嘉悦 , 韩少峰 , 郑昱 , 等 . 基于双目视觉的视网膜 血管三维重建 [J]. 中国医疗器械杂志 , 2020, 44(1): 13-19. 

[19] 苏铃雅 , 陈亦棋 , 沈丽君 . 眼科手术机器人的研究 进展 [J]. 中华实验眼科杂志 , 2018, 36(4): 311-316. 

[20] Laíns I, Wang J C, Cui Y, et al. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA)[J]. Prog Retin Eye Res, 2021, 84, 100951: 1-52. 

[21] de Smet M D, de Jonge N, Iannetta D, et al. Human/ robotic interaction: vision limits performance in simulated vitreoretinal surgery[J]. Acta Ophthalmol, 2019, 97(7): 672-678. 

[22] 许会超 , 苗新刚 , 汪苏 , 等 . 一种机器人多维光纤 光栅力传感器 [J]. 上海交通大学学报 , 2016, 50(12): 1881-1884. 

[23] Song H S, Ju W J, Lee J J. Optical fiber Bragg grating (FBG) force reflection sensing system of surgical tool for minimally invasive surgery[C]. 2014 9th IEEE Conference on Industrial Electronics and Applications, 2014: 478-482. 

[24] Song H, Kim K, Lee J. Development of optical fiber Bragg grating force-reflection sensor system of medical application for safe minimally invasive robotic surgery[J]. Review of Scientific Instruments, 2011, 82(7): 074301. 

[25] He X C, Handa J, Gehlbach P, et al. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery[J]. IEEE Trans Biomed Eng, 2014, 61(2): 522-534. 

[26] Gonenc B, Chamani A, Handa J, et al. 3-DOF forcesensing motorized micro-forceps for robot-assisted vitreoretinal surgery[J]. IEEE Sensors Journal, 2017, 17(11): 3526-3541. 

[27] Lee C, Lee D H, Nguyen C T, et al. Preliminary design and fabrication of smart handheld surgical tool with tactile feedback[C]. 2013 IEEE RO-MAN, 2013. DOI: 10.1109/ROMAN.2013.6628432. 

[28] LV C H, WANG S X, SHI C Y. A high-precision and miniature fiber Bragg grating-based force sensor for tissue palpation during minimally invasive surgery[J]. Annals of Biomedical Engineering, 2020, 48(2): 669- 681. 

[29] Moraru A D, Costin D, Moraru R L, et al. Artificial intelligence and deep learning in ophthalmologypresent and future (Review)[J]. Exp Ther Med, 2020, 20(4): 3469-3473. 

[30] Perdomo O, Rios H, Rodríguez F J, et al. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography[J]. Comput Methods Programs Biomed, 2019, 178(12): 181-189. 

[31] 王延玲 , 温明锋 , 李迎新 . 大数据时代对医疗系统 信息化发展的研究 [J]. 当代医学 , 2020, 26(10): 114- 116. 

[32] Roizenblatt M, Grupenmacher A T, Belfort Junior R, et al. Robot-assisted tremor control for performance enhancement of retinal microsurgeons[J]. B r J Ophthalmol, 2019, 103(8): 1195-1200. 

[33] Poor H A, Zhou M, Lohmann C P, et al. Reducing the number of degrees of freedom to control an eye surgical robot through classification of surgical phases[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019: 5403-5406. 

[34] 李宇庭 , 李波 , 闫荣 , 等 . 6R 机器人柔体动力学建 模及模态分析 [J]. 湖北工业大学学报 , 2015, 30(4): 65-69. 

[35] 范纪华 , 章定国 . 基于变形场不同离散方法的柔 性机器人动力学建模与仿真 [J]. 力学学报 , 2016, 48(4): 843-856. 

[36] LI Y M, TONG S C, LI T S. Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping[J]. Nonlinear Analysis Real World Applications, 2013, 14(1): 483-494. 

[37] YANG H J, MIN T. Sliding mode control for flexiblelink manipulators based on adaptive neural networks[J]. International Journal of Automation and Computing, 2018, 15(2): 239-248. 

[38] 马天兵 , 周青 , 杜菲 , 等 . 基于机器视觉和改进 PID 的压电柔性机械臂振动控制 [J]. 光学精密工程 , 2020, 28(1): 141-150. 

[39] 李向东 , 刘春芳 . 伺服驱动式柔性臂的振动抑制策 略研究 [C]. 第十六届沈阳科学学术年会论文集 ( 理 工农医 ), 2019: 717-722. 

[40] Gerber M J, Pettenkofer M, Hubschman J P. Advanced robotic surgical systems in ophthalmology[J]. Eye (Lond) 2020, 34(9): 1554-1562. 

[41] Forslund Jacobsen M, Konge L, Alberti M, et al. Robotassisted vitreoretinal surgery improves surgical accuracy compared with manual surgery: a randomized trial in simulated setting[J]. Retina, 2020, 40(11): 2091-2098. 

[42] Maberley D A L, Beelen M, Smit J, et al. A comparison of robotic and manual surgery for internal limiting membrane peeling[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(4): 773-778. 

[43] Monsarrat N, Collinet P, Narducci F, et al. Robotic assistance in gynaecological surgery: state-of-the-art[J]. Gynecol Obstet Fertil, 2009, 37(5): 415-424.

本期文章
[1] 《机器人完全不插管全胸腺切除术安全专家共识》解读(附视频 [2] 《腹腔镜或机器人辅助胰腺癌根治术中国专家共识(2022 年版)》解读 [3] 机器人手术护理配合中国专家共识(2024 版) [4] 机器人辅助腹腔镜手术治疗外阴癌中国专家共识(2024 版):附视频 [5] 机器人辅助腹腔镜手术治疗小儿复发性巨输尿管症一例并文献复习(附视频) [6] 机器人辅助胸腔镜治疗儿童隔离肺日间手术一例报道(附视频) [7] 达芬奇机器人辅助腹腔镜肾盂成形术治疗儿童马蹄肾并肾积水一例报道(附视频) [8] 机器人辅助下舌根恶性肿瘤扩大切除术:江西省首例报道(附视频) [9] 达芬奇机器人辅助动脉导管未闭结扎术:海南省首例报道(附视频) [10] 国产手术机器人辅助腹腔镜下宫颈癌根治术:国内首例报道 [11] 机器人辅助胃部分切除毕罗Ⅰ式吻合术治疗儿童胃丛状纤维黏液瘤并文献复习:全球首例报道(附视频) [12] 机器人辅助经腹膜后入路单孔腹腔镜下活体供肾切取术:全球首例报道(附视频) [13] 机器人辅助单孔胸腔镜肺联合亚段切除术:全球首例报道(附视频) [14] 手术室精准化护理在泌尿外科机器人辅助手术中的应用 [15] 口腔种植机器人辅助手术与传统种植手术的护理配合比较 [16] 机器人辅助完全腹腔镜下脾切断流术联合肝肿瘤切除术的护理配合 [17] 术中体位护理联合手术室低体温防护对机器人辅助根治性膀胱切除原位回肠新膀胱术患者舒适度及术后并发症的效果比较 [18] ADOPT 护理模式在机器人辅助腹腔镜下根治性膀胱 切除术中的应用效果 [19] 机器人辅助手术治疗脊柱骨折伴脊髓神经损伤的研究进展 [20] 显微手术机器人系统在眼底病中的应用现状及进展 [21] 新辅助化疗后机器人辅助与开腹手术治疗局部晚期 子宫颈癌术后生存影响因素的对比分析 [22] 机器人辅助盆腔廓清术在宫颈癌治疗中的应用 [23] 免举宫技术用于机器人辅助宫颈癌根治术的影响因素分析 [24] 老年缺血性脑卒中患者溶栓后采用手功能康复机器人 干预对上肢功能及握力的改善效果 [25] 脑卒中患者重返驾驶能力评估的研究现状及进展 [26] 肌电生物反馈治疗早期脑卒中偏瘫患者上肢功能障碍的疗效分析 [27] 可穿戴式足底压力监测系统的应用及进展 [28] 颈椎病新型智能牵引器的设计研发 [29] 张拉整体机器人构型与运动控制研究现状及进展 [30] 基于递归神经网络的人体下肢运动意图识别方法 [31] 六自由度上肢康复机器人机构设计及轨迹规划
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈