当前机器人技术正广泛应用于康复医学领域,为提升康复效果、确保康复质量、降低人力成本等提 供了重要助力,因此在临床应用中备受关注。本文通过对国内外文献进行综述,全面分析康复机器人在上肢、下肢、 躯干等功能障碍的康复评定和康复治疗中的应用及临床效果,以及脑机接口技术在康复治疗中的综合应用现状,展 望机器人技术在康复医学领域的未来发展前景。
Robotic technology is now widely used in the field of rehabilitation medicine, offering significant advantages for improving rehabilitation efficiency, ensuring rehabilitation quality, and reducing labor costs, etc., thus attracting growing attention in clinical application. Based on the review of domestic and international literatures, the application and clinical effect of rehabilitation robots on upper limb, lower limb and trunk dysfunction was comprehensively analyzed in this paper, the integrated application of brain-computer interface in rehabilitation therapy was elaborated, and the future development of robotic technology in rehabilitation medicine was prospected.
收稿日期:2023-08-09 录用日期:2023-09-14
Received Date: 2023-08-09 Accepted Date: 2023-09-14
通讯作者:王宁华,Email:wangninghua2003@163.com
Corresponding Author: WANG Ninghua, Email: wangninghua2003@163.com
引用格式:施杰洪,王宁华 . 机器人技术在康复医学领域的应用现状与进展 [J]. 机器人外科学杂志(中英文),2024,5(6): 1154-1166.
Citation: SHI J H, WANG N H. Current status and progress of robotic technology in rehabilitation medicine[J]. Chinese Journal of Robotic Surgery, 2024, 5(6): 1154-1166.
注:施杰洪,王宁华为共同第一作者
Co-first Author: SHI Jiehong, WANG Ninghua
[1] Oña E, Cano-de La Cuerda R, Sánchez-Herrera P, et al. A review of robotics in neurorehabilitation: towards an automated process for upper limb[J]. J Healthc Eng, 2018, 2018: 9758939.
[2] de-la-Torre R, Oa E, Balaguer C, et al. Robot-aided systems for improving the assessment of upper limb spasticity: a systematic review[J]. Sensors (Basel, Switzerland), 2020, 20(18): 5251.
[3] Morone G, Cocchi I, Paolucci S, et al. Robot-assisted therapy for arm recovery for stroke patients: state of the art and clinical implication[J]. Expert Rev. Med. Devices, 2020, 17(3): 223-233.
[4] Pignolo L. Robotics in neuro-rehabilitation[J]. J Rehabil Med, 2009, 41(12): 955-960.
[5] Sale A, Berardi N, Maffei L. Enrich the environment to empower the brain[J]. Trends Neurosci, 2009, 32(4): 233-239.
[6] Gerloff C, Bushara K, Sailer A, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke[J]. Brain, 2006, 129(Pt 3): 791-808.
[7] Nudo R J. Postinfarct cortical plasticity and behavioral recovery[J]. Stroke, 2007, 38(2 Suppl): 840-845.
[8] Feys H, De Weerdt W, Verbeke G, et al. Early and repetitive stimulation of the arm can substantially improve the long-termoutcome after stroke: a 5-year follow-up study of a randomized trial[J]. Stroke, 2004, 35(4): 924-929.
[9] Lo A C, Guarino P D, Richards L G, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke[J]. N Engl J Med, 2010, 362(19): 1772-1783.
[10] Klamroth-Marganska V, Blanco J, Campen K, et al. Threedimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial[J]. Lancet Neurol, 2014, 13(2): 159-166.
[11] Hubbard I J, Carey L M, Budd T W, et al. A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation[J]. Neurorehabil Neural Repair, 2015, 29(8): 703-713.
[12] Bressi F, Bravi M, Campagnola B, et al. Robotic treatment of the upper limb in chronic stroke and cerebral neuroplasticity: a systematic review[J]. J Biol Regul Homeost Agents., 2020, 34(5 Suppl. 3): 11-44.
[13] Molteni F, Gasperini G, Cannaviello G, et al. Exoskeleton and endeffector robots for upper and lower limbs rehabilitation: narrative review[J]. PMR, 2018, 10(9 Suppl 2): S174-S188.
[14] Cuesta-Gómez A, Sánchez-Herrera-Baeza P, Oña-Simbaña E D, et al. Effects of virtual reality associated with serious games for upper limb rehabilitation inpatients with multiple sclerosis: randomized controlled trial[J]. J Neuroeng Rehabil, 2020, 17(1): 90.
[15] TANG J S, LIU Y D, HU D W, et al. Towards BCI-actuated smart wheelchair system[J]. Biomed Eng Online, 2018, 17(1): 111.
[16] Hillman M, Hagan K, Hagan S, et al. A wheelchair mounted assistive robot[J]. Hagan Kl, 1999.
[17] 杜妍辰 , 张鑫 , 喻洪流 . 下肢康复机器人研究现状 [J]. 生物医学 工程学进展 , 2022, 43(2): 88-91.
[18] Bertani R, Melegari C, De Cola M C, et al. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis[J]. Neurol Sci, 2017, 38(9): 1561-1569.
[19] Sale P, Franceschini M, Mazzoleni S, et al. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients[J]. J Neuroeng Rehabil, 2014. DOI: 10.1186/1743-0003- 11-104.
[20] Lum P S, Burgar C G, Shor P C. Use of the MIME robotic system to retrain multijoint reaching in post-stroke hemiparesis: why some movement patterns work better than others[J]. IEEE, 2003.DOI: 10.1109/IEMBS.2003.1279614.
[21] Burgar C G, Lum P S, Shor P C, et al. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience[J]. J Rehabil Res Dev, 2000, 37(6): 663-673.
[22] ZHANG Y B, WANG Z X, JI L H, et al. The clinical application of the upper extremity compound movements rehabilitation training robot[C]//9th International Conference on Rehabilitation Robotics, 2005.
[23] Lo H S, XIE S Q. Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects[J]. Med Eng Phys, 2012, 34(3): 261-268.
[24] Lee S H, Park G, Cho D Y, et al. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment[J]. Sci Rep, 2020, 10(1): 1806.
[25] Brokaw E B, Nichols D, Holley R J, et al. Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy[J]. Neurorehabil Neural Repair, 2014, 28(4): 367-376.
[26] Nam K Y, Kim H J, Kwon B S, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017, 14(1): 24.
[27] Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. Am J Phys Med Rehabil, 2012, 91(11): 911-921.
[28] Nordin N, XIE S Q, Wünsche B. Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: a review[J]. J Neuroeng Rehabil, 2014, 11: 137.
[29] Alt Murphy M, Willén C, Sunnerhagen K S. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass[J]. Neurorehabil Neural Repair, 2011, 25(1): 71-80.
[30] Johnson M J, FENG X, Johnson L M, et al. Robotic systems that rehabilitate as well as motivate: Three strategies for motivating impaired arm use[J].IEEE, 2006.DOI: 10.1109/BIOROB. 2006.1639095.
[31] Dukelow S P, Herter T M, Bagg S D, et al. The independence of deficits in position sense and visually guided reaching following stroke[J]. J Neuroeng Rehabil, 2012. DOI: 10.1186/1743-0003-9-72.
[32] Abdullah H A, Tarry C, Datta R, et al. Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy[J]. J Rehabil Res Dev, 2007, 44(1): 43-62.
[33] Colombo R, Pisano F, Mazzone A, et al. Motor performance evaluation to improve patient’s compliance during robot-aided rehabilitation[C].IEEE/RAS-EMBS International Conference on Biomedical Robotics & Biomechatronics.IEEE, 2001.DOI: 10.1109/ BIOROB.2006.1639237.
[34] Kung P-C, Lin C-C K, Ju M-S. Neuro-rehabilitation robot-assisted assessments of synergy patterns of forearm, elbow and shoulder joints in chronic stroke patients[J]. Clin Biomech (Bristol, Avon), 2010, 25(7): 647-654.
[35] Lewis G N, Perreault E J. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke[J]. IEEE Trans Neural Syst Rehabil Eng, 2009, 17(6): 595-604.
[36] Zollo L, Rossini L, Bravi M, et al. Quantitative evaluation of upperlimb motor control in robot-aided rehabilitation[J]. Med Biol Eng Comput, 2011, 49(10): 1131-1144.
[37] de-la-Torre R, Oña E D, Balaguer C, et al. Robot-aided systems for improving the assessment of upper limb spasticity: a systematic review[J]. Sensors (Basel, Switzerland), 2020, 20(18): 5251.
[38] Krebs H I, Ferraro M, Buerger S P, et al. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus[J]. J Neuroeng Rehabil, 2004, 1(1): 5.
[39] Klamroth-Marganska V, Blanco J, Campen K, et al. Threedimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial[J]. Lancet Neurol, 2014, 13(2): 159-166.
[40] Burgar C G, Lum P S, Scremin A M, et al. Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial[J]. J Rehabil Res Dev, 2011, 48(4): 445-458.
[41] Takebayashi T, Takahashi K, Okita Y, et al. Impact of the roboticassistance level on upper extremity function in stroke patients receiving adjunct robotic rehabilitation: sub-analysis of a randomized clinical trial[J]. J Neuroeng Rehabil, 2022, 19(1): 25.
[42] Metzger J C, Lambercy O, Califfi A, et al. Neurocognitive robotassisted therapy of hand function[J]. IEEE Trans Haptics, 2014, 7(2): 140-149.
[43] Pirondini E, Coscia M, Marcheschi S, et al. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects[J]. J Neuroeng Rehabil, 2016. DOI: 10.1186/s12984-016-0117-x.
[44] Ranzani R, Lambercy O, Metzger J-C, et al. Neurocognitive robotassisted rehabilitation of hand function: a randomized control trial on motor recovery in subacute stroke[J]. J Neuroeng Rehabil, 2020, 17(1): 115.
[45] Metzger J C, Lambercy O, Califfi A, et al. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot[J]. J Neuroeng Rehabil, 2014. DOI: 10.1186/1743-0003-11-154.
[46] Rodgers H, Bosomworth H, Krebs H I, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial[J]. Lancet, 2019, 394(10192): 51-62.
[47] LI L T, FU Q, Tyson S, et al. A scoping review of design requirements for a home-based upper limb rehabilitation robot for stroke[J]. Top Stroke Rehabil, 2022, 29(6): 449-463.
[48] Cortes M, Elder J, Rykman A, et al. Improved motor performance in chronic spinal cord injury following upper-limb robotic training[J]. NeuroRehabilitation, 2013, 33(1): 57-65.
[49] Lu Z, Tong K-Y, Shin H, et al. Robotic hand-assisted training for spinal cord injury driven by myoelectric pattern recognition: a case report [J]. Am J Phys Med Rehabil, 2017, 96(10 Suppl 1): S146-S149.
[50] Siedziewski L, Schaaf R C, Mount J. Use of robotics in spinal cord injury: a case report[J]. Am J Occup Ther, 2012, 66(1): 51-58.
[51] Mekki M, Delgado A D, Fry A, et al. Robotic rehabilitation and spinal cord injury: a narrative review[J]. Neurotherapeutics, 2018, 15(3): 604-617.
[52] Takebayashi T, Takahashi K, Amano S, et al. Robot-assisted training as self-training for upper-limb hemiplegia in chronic stroke: a randomized controlled trial[J]. Stroke, 2022, 53(7): 2182-2191.
[53] Popescu D, Manta F, Rusu L, et al. Upper limb rehabilitation robotic system requirements analysis[C]//International Conference on Robotics in Alpe-Adria Danube Region.2018.DOI: 10.1007/978-3- 319-61276-8_98.
[54] Tucan P, Gherman B, Major K, et al. Fuzzy logic-based risk assessment of a parallel robot for elbow and wrist rehabilitation[J]. Int J Environ Res Public Health, 2020, 17(2): 654.
[55] Maggioni S, Melendez-Calderon A, van Asseldonk E, et al. Robotaided assessment of lower extremity functions: a review[J]. J Neuroeng Rehabil, 2016, 13(1): 72.
[56] Riener R, Lünenburger L, Maier I C, et al. Locomotor training in subjects with sensori-motor deficits: An overview of the robotic gait orthosis lokomat[J]. J Healthc Eng, 2010, 1(2): 197-216.
[57] Banala S K, Kim S H, Agrawal S K, et al. Robot assisted gait training with active leg exoskeleton (ALEX)[J]. IEEE Trans Neural Syst Rehabil Eng, 2009, 17(1): 2-8.
[58] Veneman J F, Kruidhof R, Hekman E E G, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation[J]. IEEE Trans Neural Syst Rehabil Eng, 2007, 15(3): 379-386.
[59] Domingo A, Lam T. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury[J]. J Neuroeng Rehabil, 2014, 11: 167.
[60] Chisholm A E, Domingo A, Jeyasurya J, et al. Quantification of lower extremity kinesthesia deficits using a robotic exoskeleton in people with a spinal cord injury[J]. Neurorehabil Neural Repair, 2016, 30(3): 199-208.
[61] Koopman B, van Asseldonk E H F, van der Kooij H. Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton[J]. J Neuroeng Rehabil, 2013. DOI: 10.1186/1743-0003-10-3.
[62] Hidler J, Wisman W, Neckel N. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis[J]. Clin Biomech (Bristol, Avon), 2008, 23(10): 1251-1259.
[63] Carpino G, Pezzola A, Urbano M, et al. Assessing effectiveness and costs in robot-mediated lower limbs rehabilitation: a Meta-analysis and state of the art[J]. J Healthc Eng, 2018, 2018: 7492024.
[64] Bruni M F, Melegari C, De Cola M C, et al. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis[J]. J Clin Neurosci, 2018, 48: 11-17.
[65] Munera M, Marroquin A, Jimenez L, et al. Lokomat therapy in Colombia: Current state and cognitive aspects [J]. IEEE Int Conf Rehabil Robot, 2017, 2017: 394-399.
[66] Zeilig G, Weingarden H, Zwecker M, et al. Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study[J]. J Spinal Cord Med, 2012, 35(2): 96-101.
[67] Hartigan C, Kandilakis C, Dalley S, et al. Mobility outcomes following five training sessions with a powered exoskeleton[J]. Top Spinal Cord Inj Rehabil, 2015, 21(2): 93.
[68] Kozlowski A J, Bryce T N, Dijkers M P. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking[J]. Top Spinal Cord Inj Rehabil, 2015, 21(2): 110-121.
[69] Colombo G, Joerg M, Schreier R, et al. Treadmill training of paraplegic patients using a robotic orthosis[J]. J Rehabil Res Dev, 2000, 37(6): 693-700.
[70] Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait[J]. J Rehabil Res Dev, 2000, 37(6): 701-708.
[71] Schmidt H, Werner C, Bernhardt R, et al. Gait rehabilitation machines based on programmable footplates[J]. J Neuroeng Rehabil, 2007, 4: 2.
[72] Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. Am J Phys Med Rehabil, 2012, 91(11): 911-921.
[73] Bowman T, Gervasoni E, Amico A P, et al. What is the impact of robotic rehabilitation on balance and gait outcomes in people with multiple sclerosis? A systematic review of randomized control trials[J]. Eur J Phys Rehabil Med, 2021, 57(2): 246-253.
[74] Baronchelli F, Zucchella C, Serrao M, et al. The effect of robotic assisted gait training with Lokomat® on balance control after stroke: systematic review and Meta-analysis[J]. Front Neurol, 2021, 12: 661815.
[75] ZHANG F, LI K, WU D L, et al. Therapeutic effect of AiWalker on balance and walking ability in patients with stroke: a pilot study[J]. Top Stroke Rehabil, 2021, 28(3): 236-240.
[76] CHEN S J, WANG Z B, LI Y Q, et al. Safety and feasibility of a novel exoskeleton for locomotor rehabilitation of subjects with spinal cord injury: a prospective, multi-center, and cross-over clinical trial[J]. Front Neurorobot, 2022, 16: 848443. [77] 韩稷钰 , 王衍鸿 , 万大千 . 下肢外骨骼康复机器人的研究进展及 发展趋势 [J]. 上海交通大学学报 ( 医学版 ), 2022, 42(2): 241-246.
[78] Awad L N, Bae J, O’Donnell K, et al. A soft robotic exosuit improves walking in patients after stroke[J]. Sci Transl Med, 2017, 9(400): eaai9084.
[79] Schmidt K, Duarte J E, Grimmer M, et al. The myosuit: Bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers[J]. Front Neurorobot, 2017, 11: 57.
[80] Bae J, Siviy C, Rouleau M, et al. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke[C]//2018 IEEE International Conference on Robotics and Automation (ICRA), 2018 .
[81] 远也科技发布可穿戴机器人“肌肉外甲”[J]. 机器人技术与应用 , 2022, (4): 7.
[82] 张立新 , 白定群 , 白玉龙 , 等 . 下肢康复机器人临床应用专家共 识 [J]. 康复学报 , 2023, 33(5): 383-396.
[83] HE Y T, Eguren D, Luu T P, et al. Risk management and regulations for lower limb medical exoskeletons: a review[J]. Med Devices (Auckl), 2017, 10: 89-107.
[84] Spungen A M, Bauman W A, Biswas K, et al. The design of a randomized control trial of exoskeletal-assisted walking in the home and community on quality of life in persons with chronic spinal cord injury[J]. Contemp Clin Trials, 2020, 96: 106102.
[85] Benson I, Hart K, Tussler D, et al. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study[J]. Clin Rehabil, 2016, 30(1): 73-84.
[86] Miller L E, Zimmermann A K, Herbert W G. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis[J]. Med Devices (Auckl), 2016, 9: 455-466.
[87] van Herpen F H M, van Dijsseldonk R B, Rijken H, et al. Case report: Description of two fractures during the use of a powered exoskeleton[J]. Spinal Cord Ser Cases, 2019, 5: 99.
[88] Ueba T, Hamada O, Ogata T, et al. Feasibility and safety of acute phase rehabilitation after stroke using the hybrid assistive limb robot suit[J]. Neurol Med Chir (Tokyo), 2013, 53(5): 287-290.
[89] Borggraefe I, Klaiber M, Schuler T, et al. Safety of robotic-assisted treadmill therapy in children and adolescents with gait impairment: a bi-centre survey[J]. Dev Neurorehabil, 2010, 13(2): 114-119.
[90] Guiochet J, Hoang Q A, Kaaniche M, et al. Model-based safety analysis of human-robot interactions: the MIRAS walking assistance robot[J]. IEEE Int Conf Rehabil Robot, 2013, 2013: 6650433.
[91] I. K M, Antonio P, K. A S. Effects of virtual reality training with Trunk Support Trainer (TruST) on postural kinematics[J]. IEEE Robot Autom Lett, 2017, 2(4): 2240-2247.
[92] Gorsic M, Regmi Y, Johnson A P, et al. A pilot study of varying thoracic and abdominal compression in a reconfigurable trunk exoskeleton during different activities[J]. IEEE Trans Biomed Eng, 2020, 67(6): 1585-1594.
[93] GUO X Z, ZHOU Z H, GAO Y, et al. Serial-parallel mechanism and controller design of a robotic brace for dynamic trunk support[J]. IEEE ASME Trans Mechatron, 2022, 27(6): 4518-4529.
[94] Ophaswongse C, Murray R C, Santamaria V , et al. Human evaluation of Wheelchair Robot for Active Postural Support (WRAPS)[J]. Robotica, 2019, 37(12): 1-15.
[95] Santamaria V, Luna T, Khan M, et al. The robotic Trunk-SupportTrainer (TruST) to measure and increase postural workspace during sitting in people with spinal cord injury[J]. Spinal Cord Ser Cases, 2020, 6(1): 1.
[96] Park J-H, Stegall P R, Roye D P, et al. Robotic Spine Exoskeleton (RoSE): Characterizing the 3-D stiffness of the human torso in the treatment of spine deformity[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(5): 1026-1035.
[97] Murray R C, Ophaswongse C, Agrawal S K. Design of a Wheelchair Robot for Active PosturalSupport (WRAPS)[J]. J Mech Robot, 2019, 11(2): 020911.
[98] Lebedev M A, Nicolelis M A. Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation[J]. Physiol Rev, 2017, 97(2): 767-837.
[99] WEN D, FAN Y L, Hsu S H, et al. Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: a narrative review[J]. Ann Phys Rehabil Med, 2021, 64(1): 101404.
[100] Riccio A, Pichiorri F, Schettini F, et al. Interfacing brain with computer to improve communication and rehabilitation after brain damage[J]. Prog Brain Res, 2016, 228: 357-387.
[101] Camargo-Vargas D, Callejas-Cuervo M, Mazzoleni S. Brain-computer interfaces systems for upper and lower limb rehabilitation: a systematic review[J]. Sensors (Basel, Switzerland), 2021, 21(13): 4312.
[102] Vansteensel M J, Klein E, van Thiel G, et al. Towards clinical application of implantable brain-computer interfaces for people with late-stage ALS: medical and ethical considerations[J]. J Neurol, 2023, 270(3): 1323-1336.
[103] Karácsony T, Hansen J P, Iversen H K, et al. Brain computer interface for neuro-rehabilitation with deep learning classification and virtual reality feedback[J].In Proceedings of the 10th Augmented Human International Conference 2019, 2019.DOI: 10.1145/3311823.3311864.
[104] Tariq M, Trivailo P M, Simic M. EEG-based BCI control schemes for lower-limb assistive-robots[J]. Front Hum Neurosci, 2018, 12: 312.
[105] Sreedharan S, Sitaram R, Paul J S, et al. Brain-computer interfaces for neurorehabilitation[J]. Crit Rev Biomed Eng, 2013, 41(3): 269-279.
[106] Jamil N, Belkacem A N, Ouhbi S, et al. Noninvasive electroencephalography equipment for assistive, adaptive, and rehabilitative braincomputer interfaces: a systematic literature review[J]. Sensors (Basel, Switzerland), 2021, 21(14): 4754.
[107] Leeb R, Pérez-Marcos D. Brain-computer interfaces and virtual reality for neurorehabilitation[J]. Handb Clin Neurol, 2020, 168: 183-197.
[108] Bouton C E. Merging brain-computer interface and functional electrical stimulation technologies for movement restoration[J]. Handb Clin Neurol, 2020, 168: 303-309.
[109] Soekadar S R, Witkowski M, Cossio E G, et al. Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: feasibility and limitations[J]. Front Behav Neurosci, 2014, 8: 93.
[110] Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain-computer interfaces for communication and rehabilitation[J]. Nat Rev Neurol, 2016, 12(9): 513-525.