中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

机器人技术在康复医学领域的应用现状与进展

Current status and progress of robotic technology in rehabilitation medicine

作者:施杰洪,王宁华

Vol. 5 No. 6 Dec. 2024 DOI: 10.12180/j.issn.2096-7721.2024.06.025 发布日期:2025-01-17
关键词:康复机器人;康复医学;神经可塑性;脑机接口技术

作者简介:

当前机器人技术正广泛应用于康复医学领域,为提升康复效果、确保康复质量、降低人力成本等提 供了重要助力,因此在临床应用中备受关注。本文通过对国内外文献进行综述,全面分析康复机器人在上肢、下肢、 躯干等功能障碍的康复评定和康复治疗中的应用及临床效果,以及脑机接口技术在康复治疗中的综合应用现状,展 望机器人技术在康复医学领域的未来发展前景。

Robotic technology is now widely used in the field of rehabilitation medicine, offering significant advantages for improving rehabilitation efficiency, ensuring rehabilitation quality, and reducing labor costs, etc., thus attracting growing attention in clinical application. Based on the review of domestic and international literatures, the application and clinical effect of rehabilitation robots on upper limb, lower limb and trunk dysfunction was comprehensively analyzed in this paper, the integrated application of brain-computer interface in rehabilitation therapy was elaborated, and the future development of robotic technology in rehabilitation medicine was prospected.

稿件信息

收稿日期:2023-08-09  录用日期:2023-09-14 

Received Date: 2023-08-09  Accepted Date: 2023-09-14 

通讯作者:王宁华,Email:wangninghua2003@163.com 

Corresponding Author: WANG Ninghua, Email: wangninghua2003@163.com 

引用格式:施杰洪,王宁华 . 机器人技术在康复医学领域的应用现状与进展 [J]. 机器人外科学杂志(中英文),2024,5(6): 1154-1166. 

Citation: SHI J H, WANG N H. Current status and progress of robotic technology in rehabilitation medicine[J]. Chinese Journal of Robotic Surgery, 2024, 5(6): 1154-1166. 

注:施杰洪,王宁华为共同第一作者 

Co-first Author: SHI Jiehong, WANG Ninghua

参考文献

[1] Oña E, Cano-de La Cuerda R, Sánchez-Herrera P, et al. A review of robotics in neurorehabilitation: towards an automated process for upper limb[J]. J Healthc Eng, 2018, 2018: 9758939. 

[2] de-la-Torre R, Oa E, Balaguer C, et al. Robot-aided systems for improving the assessment of upper limb spasticity: a systematic review[J]. Sensors (Basel, Switzerland), 2020, 20(18): 5251. 

[3] Morone G, Cocchi I, Paolucci S, et al. Robot-assisted therapy for arm recovery for stroke patients: state of the art and clinical implication[J]. Expert Rev. Med. Devices, 2020, 17(3): 223-233. 

[4] Pignolo L. Robotics in neuro-rehabilitation[J]. J Rehabil Med, 2009, 41(12): 955-960. 

[5] Sale A, Berardi N, Maffei L. Enrich the environment to empower the brain[J]. Trends Neurosci, 2009, 32(4): 233-239. 

[6] Gerloff C, Bushara K, Sailer A, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke[J]. Brain, 2006, 129(Pt 3): 791-808. 

[7] Nudo R J. Postinfarct cortical plasticity and behavioral recovery[J]. Stroke, 2007, 38(2 Suppl): 840-845. 

[8] Feys H, De Weerdt W, Verbeke G, et al. Early and repetitive stimulation of the arm can substantially improve the long-termoutcome after stroke: a 5-year follow-up study of a randomized trial[J]. Stroke, 2004, 35(4): 924-929. 

[9] Lo A C, Guarino P D, Richards L G, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke[J]. N Engl J Med, 2010, 362(19): 1772-1783. 

[10] Klamroth-Marganska V, Blanco J, Campen K, et al. Threedimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial[J]. Lancet Neurol, 2014, 13(2): 159-166. 

[11] Hubbard I J, Carey L M, Budd T W, et al. A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation[J]. Neurorehabil Neural Repair, 2015, 29(8): 703-713. 

[12] Bressi F, Bravi M, Campagnola B, et al. Robotic treatment of the upper limb in chronic stroke and cerebral neuroplasticity: a systematic review[J]. J Biol Regul Homeost Agents., 2020, 34(5 Suppl. 3): 11-44. 

[13] Molteni F, Gasperini G, Cannaviello G, et al. Exoskeleton and endeffector robots for upper and lower limbs rehabilitation: narrative review[J]. PMR, 2018, 10(9 Suppl 2): S174-S188. 

[14] Cuesta-Gómez A, Sánchez-Herrera-Baeza P, Oña-Simbaña E D, et al. Effects of virtual reality associated with serious games for upper limb rehabilitation inpatients with multiple sclerosis: randomized controlled trial[J]. J Neuroeng Rehabil, 2020, 17(1): 90. 

[15] TANG J S, LIU Y D, HU D W, et al. Towards BCI-actuated smart wheelchair system[J]. Biomed Eng Online, 2018, 17(1): 111. 

[16] Hillman M, Hagan K, Hagan S, et al. A wheelchair mounted assistive robot[J]. Hagan Kl, 1999. 

[17] 杜妍辰 , 张鑫 , 喻洪流 . 下肢康复机器人研究现状 [J]. 生物医学 工程学进展 , 2022, 43(2): 88-91. 

[18] Bertani R, Melegari C, De Cola M C, et al. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis[J]. Neurol Sci, 2017, 38(9): 1561-1569. 

[19] Sale P, Franceschini M, Mazzoleni S, et al. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients[J]. J Neuroeng Rehabil, 2014. DOI: 10.1186/1743-0003- 11-104. 

[20] Lum P S, Burgar C G, Shor P C. Use of the MIME robotic system to retrain multijoint reaching in post-stroke hemiparesis: why some movement patterns work better than others[J]. IEEE, 2003.DOI: 10.1109/IEMBS.2003.1279614. 

[21] Burgar C G, Lum P S, Shor P C, et al. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience[J]. J Rehabil Res Dev, 2000, 37(6): 663-673. 

[22] ZHANG Y B, WANG Z X, JI L H, et al. The clinical application of the upper extremity compound movements rehabilitation training robot[C]//9th International Conference on Rehabilitation Robotics, 2005. 

[23] Lo H S, XIE S Q. Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects[J]. Med Eng Phys, 2012, 34(3): 261-268. 

[24] Lee S H, Park G, Cho D Y, et al. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment[J]. Sci Rep, 2020, 10(1): 1806. 

[25] Brokaw E B, Nichols D, Holley R J, et al. Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy[J]. Neurorehabil Neural Repair, 2014, 28(4): 367-376. 

[26] Nam K Y, Kim H J, Kwon B S, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017, 14(1): 24. 

[27] Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. Am J Phys Med Rehabil, 2012, 91(11): 911-921. 

[28] Nordin N, XIE S Q, Wünsche B. Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: a review[J]. J Neuroeng Rehabil, 2014, 11: 137. 

[29] Alt Murphy M, Willén C, Sunnerhagen K S. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass[J]. Neurorehabil Neural Repair, 2011, 25(1): 71-80. 

[30] Johnson M J, FENG X, Johnson L M, et al. Robotic systems that rehabilitate as well as motivate: Three strategies for motivating impaired arm use[J].IEEE, 2006.DOI: 10.1109/BIOROB. 2006.1639095. 

[31] Dukelow S P, Herter T M, Bagg S D, et al. The independence of deficits in position sense and visually guided reaching following stroke[J]. J Neuroeng Rehabil, 2012. DOI: 10.1186/1743-0003-9-72. 

[32] Abdullah H A, Tarry C, Datta R, et al. Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy[J]. J Rehabil Res Dev, 2007, 44(1): 43-62. 

[33] Colombo R, Pisano F, Mazzone A, et al. Motor performance evaluation to improve patient’s compliance during robot-aided rehabilitation[C].IEEE/RAS-EMBS International Conference on Biomedical Robotics & Biomechatronics.IEEE, 2001.DOI: 10.1109/ BIOROB.2006.1639237. 

[34] Kung P-C, Lin C-C K, Ju M-S. Neuro-rehabilitation robot-assisted assessments of synergy patterns of forearm, elbow and shoulder joints in chronic stroke patients[J]. Clin Biomech (Bristol, Avon), 2010, 25(7): 647-654. 

[35] Lewis G N, Perreault E J. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke[J]. IEEE Trans Neural Syst Rehabil Eng, 2009, 17(6): 595-604. 

[36] Zollo L, Rossini L, Bravi M, et al. Quantitative evaluation of upperlimb motor control in robot-aided rehabilitation[J]. Med Biol Eng Comput, 2011, 49(10): 1131-1144. 

[37] de-la-Torre R, Oña E D, Balaguer C, et al. Robot-aided systems for improving the assessment of upper limb spasticity: a systematic review[J]. Sensors (Basel, Switzerland), 2020, 20(18): 5251. 

[38] Krebs H I, Ferraro M, Buerger S P, et al. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus[J]. J Neuroeng Rehabil, 2004, 1(1): 5. 

[39] Klamroth-Marganska V, Blanco J, Campen K, et al. Threedimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial[J]. Lancet Neurol, 2014, 13(2): 159-166. 

[40] Burgar C G, Lum P S, Scremin A M, et al. Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial[J]. J Rehabil Res Dev, 2011, 48(4): 445-458. 

[41] Takebayashi T, Takahashi K, Okita Y, et al. Impact of the roboticassistance level on upper extremity function in stroke patients receiving adjunct robotic rehabilitation: sub-analysis of a randomized clinical trial[J]. J Neuroeng Rehabil, 2022, 19(1): 25. 

[42] Metzger J C, Lambercy O, Califfi A, et al. Neurocognitive robotassisted therapy of hand function[J]. IEEE Trans Haptics, 2014, 7(2): 140-149. 

[43] Pirondini E, Coscia M, Marcheschi S, et al. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects[J]. J Neuroeng Rehabil, 2016. DOI: 10.1186/s12984-016-0117-x. 

[44] Ranzani R, Lambercy O, Metzger J-C, et al. Neurocognitive robotassisted rehabilitation of hand function: a randomized control trial on motor recovery in subacute stroke[J]. J Neuroeng Rehabil, 2020, 17(1): 115. 

[45] Metzger J C, Lambercy O, Califfi A, et al. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot[J]. J Neuroeng Rehabil, 2014. DOI: 10.1186/1743-0003-11-154. 

[46] Rodgers H, Bosomworth H, Krebs H I, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial[J]. Lancet, 2019, 394(10192): 51-62. 

[47] LI L T, FU Q, Tyson S, et al. A scoping review of design requirements for a home-based upper limb rehabilitation robot for stroke[J]. Top Stroke Rehabil, 2022, 29(6): 449-463. 

[48] Cortes M, Elder J, Rykman A, et al. Improved motor performance in chronic spinal cord injury following upper-limb robotic training[J]. NeuroRehabilitation, 2013, 33(1): 57-65. 

[49] Lu Z, Tong K-Y, Shin H, et al. Robotic hand-assisted training for spinal cord injury driven by myoelectric pattern recognition: a case report [J]. Am J Phys Med Rehabil, 2017, 96(10 Suppl 1): S146-S149. 

[50] Siedziewski L, Schaaf R C, Mount J. Use of robotics in spinal cord injury: a case report[J]. Am J Occup Ther, 2012, 66(1): 51-58. 

[51] Mekki M, Delgado A D, Fry A, et al. Robotic rehabilitation and spinal cord injury: a narrative review[J]. Neurotherapeutics, 2018, 15(3): 604-617. 

[52] Takebayashi T, Takahashi K, Amano S, et al. Robot-assisted training as self-training for upper-limb hemiplegia in chronic stroke: a randomized controlled trial[J]. Stroke, 2022, 53(7): 2182-2191. 

[53] Popescu D, Manta F, Rusu L, et al. Upper limb rehabilitation robotic system requirements analysis[C]//International Conference on Robotics in Alpe-Adria Danube Region.2018.DOI: 10.1007/978-3- 319-61276-8_98. 

[54] Tucan P, Gherman B, Major K, et al. Fuzzy logic-based risk assessment of a parallel robot for elbow and wrist rehabilitation[J]. Int J Environ Res Public Health, 2020, 17(2): 654. 

[55] Maggioni S, Melendez-Calderon A, van Asseldonk E, et al. Robotaided assessment of lower extremity functions: a review[J]. J Neuroeng Rehabil, 2016, 13(1): 72. 

[56] Riener R, Lünenburger L, Maier I C, et al. Locomotor training in subjects with sensori-motor deficits: An overview of the robotic gait orthosis lokomat[J]. J Healthc Eng, 2010, 1(2): 197-216. 

[57] Banala S K, Kim S H, Agrawal S K, et al. Robot assisted gait training with active leg exoskeleton (ALEX)[J]. IEEE Trans Neural Syst Rehabil Eng, 2009, 17(1): 2-8. 

[58] Veneman J F, Kruidhof R, Hekman E E G, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation[J]. IEEE Trans Neural Syst Rehabil Eng, 2007, 15(3): 379-386. 

[59] Domingo A, Lam T. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury[J]. J Neuroeng Rehabil, 2014, 11: 167. 

[60] Chisholm A E, Domingo A, Jeyasurya J, et al. Quantification of lower extremity kinesthesia deficits using a robotic exoskeleton in people with a spinal cord injury[J]. Neurorehabil Neural Repair, 2016, 30(3): 199-208. 

[61] Koopman B, van Asseldonk E H F, van der Kooij H. Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton[J]. J Neuroeng Rehabil, 2013. DOI: 10.1186/1743-0003-10-3. 

[62] Hidler J, Wisman W, Neckel N. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis[J]. Clin Biomech (Bristol, Avon), 2008, 23(10): 1251-1259. 

[63] Carpino G, Pezzola A, Urbano M, et al. Assessing effectiveness and costs in robot-mediated lower limbs rehabilitation: a Meta-analysis and state of the art[J]. J Healthc Eng, 2018, 2018: 7492024. 

[64] Bruni M F, Melegari C, De Cola M C, et al. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis[J]. J Clin Neurosci, 2018, 48: 11-17. 

[65] Munera M, Marroquin A, Jimenez L, et al. Lokomat therapy in Colombia: Current state and cognitive aspects [J]. IEEE Int Conf Rehabil Robot, 2017, 2017: 394-399. 

[66] Zeilig G, Weingarden H, Zwecker M, et al. Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study[J]. J Spinal Cord Med, 2012, 35(2): 96-101. 

[67] Hartigan C, Kandilakis C, Dalley S, et al. Mobility outcomes following five training sessions with a powered exoskeleton[J]. Top Spinal Cord Inj Rehabil, 2015, 21(2): 93. 

[68] Kozlowski A J, Bryce T N, Dijkers M P. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking[J]. Top Spinal Cord Inj Rehabil, 2015, 21(2): 110-121. 

[69] Colombo G, Joerg M, Schreier R, et al. Treadmill training of paraplegic patients using a robotic orthosis[J]. J Rehabil Res Dev, 2000, 37(6): 693-700. 

[70] Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait[J]. J Rehabil Res Dev, 2000, 37(6): 701-708. 

[71] Schmidt H, Werner C, Bernhardt R, et al. Gait rehabilitation machines based on programmable footplates[J]. J Neuroeng Rehabil, 2007, 4: 2. 

[72] Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. Am J Phys Med Rehabil, 2012, 91(11): 911-921. 

[73] Bowman T, Gervasoni E, Amico A P, et al. What is the impact of robotic rehabilitation on balance and gait outcomes in people with multiple sclerosis? A systematic review of randomized control trials[J]. Eur J Phys Rehabil Med, 2021, 57(2): 246-253. 

[74] Baronchelli F, Zucchella C, Serrao M, et al. The effect of robotic assisted gait training with Lokomat® on balance control after stroke: systematic review and Meta-analysis[J]. Front Neurol, 2021, 12: 661815. 

[75] ZHANG F, LI K, WU D L, et al. Therapeutic effect of AiWalker on balance and walking ability in patients with stroke: a pilot study[J]. Top Stroke Rehabil, 2021, 28(3): 236-240. 

[76] CHEN S J, WANG Z B, LI Y Q, et al. Safety and feasibility of a novel exoskeleton for locomotor rehabilitation of subjects with spinal cord injury: a prospective, multi-center, and cross-over clinical trial[J]. Front Neurorobot, 2022, 16: 848443. [77] 韩稷钰 , 王衍鸿 , 万大千 . 下肢外骨骼康复机器人的研究进展及 发展趋势 [J]. 上海交通大学学报 ( 医学版 ), 2022, 42(2): 241-246. 

[78] Awad L N, Bae J, O’Donnell K, et al. A soft robotic exosuit improves walking in patients after stroke[J]. Sci Transl Med, 2017, 9(400): eaai9084. 

[79] Schmidt K, Duarte J E, Grimmer M, et al. The myosuit: Bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers[J]. Front Neurorobot, 2017, 11: 57. 

[80] Bae J, Siviy C, Rouleau M, et al. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke[C]//2018 IEEE International Conference on Robotics and Automation (ICRA), 2018 . 

[81] 远也科技发布可穿戴机器人“肌肉外甲”[J]. 机器人技术与应用 , 2022, (4): 7. 

[82] 张立新 , 白定群 , 白玉龙 , 等 . 下肢康复机器人临床应用专家共 识 [J]. 康复学报 , 2023, 33(5): 383-396. 

[83] HE Y T, Eguren D, Luu T P, et al. Risk management and regulations for lower limb medical exoskeletons: a review[J]. Med Devices (Auckl), 2017, 10: 89-107. 

[84] Spungen A M, Bauman W A, Biswas K, et al. The design of a randomized control trial of exoskeletal-assisted walking in the home and community on quality of life in persons with chronic spinal cord injury[J]. Contemp Clin Trials, 2020, 96: 106102. 

[85] Benson I, Hart K, Tussler D, et al. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study[J]. Clin Rehabil, 2016, 30(1): 73-84. 

[86] Miller L E, Zimmermann A K, Herbert W G. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis[J]. Med Devices (Auckl), 2016, 9: 455-466. 

[87] van Herpen F H M, van Dijsseldonk R B, Rijken H, et al. Case report: Description of two fractures during the use of a powered exoskeleton[J]. Spinal Cord Ser Cases, 2019, 5: 99. 

[88] Ueba T, Hamada O, Ogata T, et al. Feasibility and safety of acute phase rehabilitation after stroke using the hybrid assistive limb robot suit[J]. Neurol Med Chir (Tokyo), 2013, 53(5): 287-290. 

[89] Borggraefe I, Klaiber M, Schuler T, et al. Safety of robotic-assisted treadmill therapy in children and adolescents with gait impairment: a bi-centre survey[J]. Dev Neurorehabil, 2010, 13(2): 114-119. 

[90] Guiochet J, Hoang Q A, Kaaniche M, et al. Model-based safety analysis of human-robot interactions: the MIRAS walking assistance robot[J]. IEEE Int Conf Rehabil Robot, 2013, 2013: 6650433. 

[91] I. K M, Antonio P, K. A S. Effects of virtual reality training with Trunk Support Trainer (TruST) on postural kinematics[J]. IEEE Robot Autom Lett, 2017, 2(4): 2240-2247. 

[92] Gorsic M, Regmi Y, Johnson A P, et al. A pilot study of varying thoracic and abdominal compression in a reconfigurable trunk exoskeleton during different activities[J]. IEEE Trans Biomed Eng, 2020, 67(6): 1585-1594. 

[93] GUO X Z, ZHOU Z H, GAO Y, et al. Serial-parallel mechanism and controller design of a robotic brace for dynamic trunk support[J]. IEEE ASME Trans Mechatron, 2022, 27(6): 4518-4529. 

[94] Ophaswongse C, Murray R C, Santamaria V , et al. Human evaluation of Wheelchair Robot for Active Postural Support (WRAPS)[J]. Robotica, 2019, 37(12): 1-15. 

[95] Santamaria V, Luna T, Khan M, et al. The robotic Trunk-SupportTrainer (TruST) to measure and increase postural workspace during sitting in people with spinal cord injury[J]. Spinal Cord Ser Cases, 2020, 6(1): 1. 

[96] Park J-H, Stegall P R, Roye D P, et al. Robotic Spine Exoskeleton (RoSE): Characterizing the 3-D stiffness of the human torso in the treatment of spine deformity[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(5): 1026-1035. 

[97] Murray R C, Ophaswongse C, Agrawal S K. Design of a Wheelchair Robot for Active PosturalSupport (WRAPS)[J]. J Mech Robot, 2019, 11(2): 020911. 

[98] Lebedev M A, Nicolelis M A. Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation[J]. Physiol Rev, 2017, 97(2): 767-837. 

[99] WEN D, FAN Y L, Hsu S H, et al. Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: a narrative review[J]. Ann Phys Rehabil Med, 2021, 64(1): 101404. 

[100] Riccio A, Pichiorri F, Schettini F, et al. Interfacing brain with computer to improve communication and rehabilitation after brain damage[J]. Prog Brain Res, 2016, 228: 357-387. 

[101] Camargo-Vargas D, Callejas-Cuervo M, Mazzoleni S. Brain-computer interfaces systems for upper and lower limb rehabilitation: a systematic review[J]. Sensors (Basel, Switzerland), 2021, 21(13): 4312. 

[102] Vansteensel M J, Klein E, van Thiel G, et al. Towards clinical application of implantable brain-computer interfaces for people with late-stage ALS: medical and ethical considerations[J]. J Neurol, 2023, 270(3): 1323-1336. 

[103] Karácsony T, Hansen J P, Iversen H K, et al. Brain computer interface for neuro-rehabilitation with deep learning classification and virtual reality feedback[J].In Proceedings of the 10th Augmented Human International Conference 2019, 2019.DOI: 10.1145/3311823.3311864. 

[104] Tariq M, Trivailo P M, Simic M. EEG-based BCI control schemes for lower-limb assistive-robots[J]. Front Hum Neurosci, 2018, 12: 312. 

[105] Sreedharan S, Sitaram R, Paul J S, et al. Brain-computer interfaces for neurorehabilitation[J]. Crit Rev Biomed Eng, 2013, 41(3): 269-279. 

[106] Jamil N, Belkacem A N, Ouhbi S, et al. Noninvasive electroencephalography equipment for assistive, adaptive, and rehabilitative braincomputer interfaces: a systematic literature review[J]. Sensors (Basel, Switzerland), 2021, 21(14): 4754. 

[107] Leeb R, Pérez-Marcos D. Brain-computer interfaces and virtual reality for neurorehabilitation[J]. Handb Clin Neurol, 2020, 168: 183-197. 

[108] Bouton C E. Merging brain-computer interface and functional electrical stimulation technologies for movement restoration[J]. Handb Clin Neurol, 2020, 168: 303-309. 

[109] Soekadar S R, Witkowski M, Cossio E G, et al. Learned EEG-based brain self-regulation of motor-related oscillations during application of transcranial electric brain stimulation: feasibility and limitations[J]. Front Behav Neurosci, 2014, 8: 93. 

[110] Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain-computer interfaces for communication and rehabilitation[J]. Nat Rev Neurol, 2016, 12(9): 513-525.

本期文章
[1] 国产手术机器人 5G 远程双侧性腺切除术:全球首例报道(附手术视频) [2] 全程化延续性护理对机器人辅助根治性膀胱切除术联合腹壁造口患者自我管理、生活质量和造口并发症的影响 [3] 追踪营养护理方案在机器人辅助肝癌术后放疗患者中的应用研究 [4] ERAS 导向的延续性护理对机器人辅助根治性膀胱切除术后腹壁造口患者的应用效果 [5] 叙事医学护理对机器人辅助根治性肾切除术患者术后康复的影响 [6] 正念护理配合疼痛管理对经口腔前庭入路机器人甲状腺手术患者情绪及疼痛的干预效果 [7] 健康教育路径联合个体化舒适护理在复杂性肾结石患者机器人辅助腹腔镜下肾盂切开取石术中的应用效果 [8] 基于知识图谱的机器人辅助肺癌切除术多元化康复管理 [9] 远程手术机器人辅助腹腔镜根治性肾切除术第一助手的配合 [10] MRI 对超低位直肠癌行机器人辅助保肛手术的预测价值分析 [11] 项目质控联合口诀法管理措施预防达芬奇机器人手术患者术中获得性压力性损伤的效果 [12] 基于机器学习算法的腹腔镜结直肠癌根治术后肠梗阻预测模型 [13] 机器人辅助单孔腹腔镜子宫肌瘤剔除术 Vs 机器人辅助多孔腹腔镜子宫肌瘤剔除术:系统评价与 Meta 分析 [14] 机器人辅助杂交冠状动脉血运重建术联合经皮冠状动脉介入治疗对冠心病患者心功能的影响 [15] 加速康复外科联合肠内营养对机器人辅助腹腔镜肝切除术患者术后胃肠功能恢复的影响 [16] 机器人辅助二尖瓣成形术治疗原发性二尖瓣关闭不 全的临床效果分析:倾向性评分匹配研究 [17] Maryland 双极镊在机器人辅助胃癌根治术中的临床应用(附手术视频) [18] 机器人辅助步态训练在烧伤康复中的研究进展 [19] 机器人技术在康复医学领域的应用现状与进展 [20] 手术机器人在脊柱神经外科的临床应用 [21] 上肢康复机器人联合 VR 训练对重症颅脑损伤术后干预效果及对日常行为的中介效应研究 [22] 下肢康复机器人短期辅助双任务训练在脑卒中患者康复期的运用效果 [23] 下肢康复机器人及等速肌力训练对胸腰段脊髓损伤患者康复效果的影响 [24] 下肢外骨骼机器人在脑卒中偏瘫患者康复中的应用及效果观察 [25] 手部外骨骼机器人联合手运动想象对脑卒中偏瘫患者脑电信号及认知功能的影响 [26] 等速肌力训练结合上肢康复机器人对脑卒中恢复期偏瘫患者上肢功能恢复、生活质量及神经可塑性的影响 [27] 下肢康复机器人辅助训练对脑梗死偏瘫患者恢复情况的影响 [28] 机器人辅助步态训练联合综合康复治疗对下肢危重烧伤患者康复效果及膝关节功能的影响 [29] 下肢康复机器人联合康复训练对脊髓损伤截瘫患者的影响 [30] 加速康复外科路径下机器人辅助手术与开腹手术治疗早期宫颈癌的术后并发症及复发率(附手术视频) [31] PERMA 模式下心理干预联合渐进性肌肉放松训练在机器人辅助宫颈癌根治术后放疗患者中的应用 [32] 机器人辅助腹腔镜下改良宫颈癌根治术的疗效分析 [33] 早期宫颈癌患者机器人辅助宫颈癌根治术后并发症危险因素分析 [34] 达芬奇机器人手术系统模块化布局入路技术在机器人辅助腹腔镜下宫颈癌手术中的临床应用效果 [35] 机器人辅助与传统腹腔镜下宫颈癌根治术的初期临床效果对比 [36] 达芬奇机器人辅助腹腔镜技术在宫颈癌根治术中的应用(附手术视频) [37] 改良 VIP 技术在机器人辅助腹腔镜下根治性前列腺切除术中的应用研究(附手术视频) [38] 腹膜外经膀胱入路单孔机器人辅助根治性前列腺切除术的临床应用(附手术视频) [39] 凯格尔运动联合心理支持对机器人辅助根治性前列腺切除术后尿失禁的影响 [40] 机器人辅助腹腔镜前列腺癌根治术后患者麻醉复苏期发生低氧血症的危险因素分析 [41] 机器人辅助腹腔镜下良性前列腺增生手术术式介绍 [42] 经膀胱入路国产单孔手术机器人辅助腹腔镜下根治性前列腺切除术初步经验 [43] 四孔法腹膜外入路机器人辅助根治性前列腺切除术经验分享(附手术视频)
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈