中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

吲哚菁绿近红外荧光显影技术在机器人辅助腹腔镜上尿路修复重建手术中的应用(附手术视频)

Application of indocyanine green and near-infrared fluorescence imaging in robot-assisted laparoscopic urinary tract repair and reconstruction surgery(with video)

作者:左佳乐,李笑然,何綦琪,马腾,石玮,包军胜

Vol. 5 No. 3 Jun. 2024 DOI: 10.12180/j.issn.2096-7721.2024.03.017 发布日期:2024-05-24
关键词:吲哚菁绿;舌黏膜补片;输尿管狭窄;自体肾移植;机器人辅助手术

作者简介:

目的:探讨吲哚菁绿(ICG)近红外荧光(NIRF)实时显影技术在机器人辅助腹腔镜上尿路修复重建 手术中的可行性及临床应用价值。方法:回顾性分析 2021 年 3 月—2023 年 10 月兰州大学第二医院收治的 8 例行吲 哚菁绿引导下机器人辅助腹腔镜上尿路重建修复手术患者的临床资料,8 例患者术中均经肾造瘘管和(或)输尿管 导管注入吲哚菁绿溶液,通过机器人荧光实时显影技术辅助辨认输尿管,指导手术策略。收集患者基线资料、手术 信息及术后随访等资料进行分析。结果:8例患者均顺利完成手术,其中肾盂成形术3例,舌黏膜补片代输尿管术2例, 输尿管端端吻合术、膀胱瓣代输尿管术及自体肾移植术各 1 例,均借助 ICG-NIRF 技术完成输尿管狭窄段的精准定 位及分离,无中转开腹。8 例患者平均手术时长 257.5(140~330)min,平均术中估计出血量 55(5~150)ml,1 例 二次肾盂成形术患儿术中结肠粘连严重,机械损伤出现肠破裂,同期缝合修复受损结肠,术后愈合良好,其余患者 术后恢复良好,无术中及术后短期并发症出现。8 例患者平均随访时间 5.5(2~19)月,均未见吲哚菁绿副反应。8 例患者术后 3 月复查泌尿系 B 超显示肾积水缓解,梗阻解除。3 例患者术后 4 月行泌尿系肾盂输尿管顺行造影示输 尿管通畅,拔除造瘘管。结论:吲哚菁绿荧光实时显影技术在复杂机器人上尿路修复重建手术中显示输尿管及狭窄 段准确可靠,多种技术的联合有助于实现微创和精准化,值得临床推广。

Objective: To explore the feasibility and the clinical application of indocyanine green (ICG) and near-infrared fluorescence (NIRF) imaging in robot-assisted laparoscopic upper urinary tract repair and reconstruction surgery.Methods: The clinical data of 8 patients who underwent ICG-guided robot-assisted laparoscopic upper urinary tract repair and reconstruction in the Second Hospital of Lanzhou University between March 2021 to October 2023 were retrospectively analyzed. ICG solution was injected into the 8 patients through nephrostomy tube and / or ureteral catheter during operation. Real-time fluorescence imaging technique was used to identify the ureter to help surgical decision-making. Patient characteristics, perioperative outcomes, and complications were analyzed. Results: All the 8 cases of surgery were successfully completed without conversion to laparotomy, including 3cases of pyeloplasty, 2 cases of lingual mucosal graft ureteroplasty, 1 case of ureteroureterostomy, 1 case of bladder muscle flap ureteroplasty and 1 case of kidney autotransplantation. ICG-NIRF technology was used to accurately locate and separate the ureteral stenosis. The average operative time of the 8 patients was 257.5(140 to 330)min, and the average intraoperative blood loss was 55(5 to 150)ml. A child who underwent secondary pyeloplasty for intestinal rupture caused by severe colonic adhesion and mechanical injury. The ascending colon was repaired in one stage and healed well after surgery. The other patients recovered well after the operation, and no intraoperative or short-term postoperative complications occurred. The average follow-up time was 5.5(2 to 19)months, and no ICG side effect was found in the 8 patients. B-ultrasound of urinary system showed that hydronephrosis and obstruction were relieved 3 months after surgery in the 8 patients. Antegrade urography of urinary pelvis and ureter was performed in 3 patients 4 months after surgery, and the results indicated that the ureter was unobstructed and the fistula tube was removed. Conclusion: ICG real-time imaging technique is accurate and reliable in displaying ureter and stenosis during complex robotic upper urinary tract reconstruction surgery. The combination of ICG and NIRF in robot-assisted urologic surgery can achieve minimally invasive and accurate operation, which is worthy of clinical promotion.

稿件信息

收稿日期:2024-01-02  录用日期:2024-03-08 

Received Date: 2024-01-02  Accepted Date: 2024-03-08 

基金项目:国家自然科学基金(82160146);兰州大学第二医院萃英科技创新计划项目(CY2020-MS08);兰州大学第二医院 萃英科技创新计划项目(CY2021-MS-A12) 

Foundation Item: National Natural Science Foundation of China (82160146); Cuiying Scientific and Technological Innovation Program of the Second Hospital of Lanzhou University ( CY2020-MS08 ); Cuiying Scientific and Technological Innovation Program of the Second Hospital of Lanzhou University ( CY2021-MS-A12 ) 

通讯作者:包军胜,Email:bjshurol@qq.com 

Corresponding Author: BAO Junsheng, Email: bjshurol@qq.com 

引用格式:左佳乐,李笑然,何綦琪,等 . 吲哚菁绿近红外荧光显影技术在机器人辅助腹腔镜上尿路修复重建手术中的应用(附 手术视频)[J]. 机器人外科学杂志(中英文),2024,5(3):412-419. 

Citation: ZUO J L, LI X R, HE Q Q, et al. Application of indocyanine green and near-infrared fluorescence imaging in robotassisted laparoscopic urinary tract repair and reconstruction surgery (with surgical video)[J]. Chinese Journal of Robotic Surgery, 2024, 5(3 ): 412-419.

参考文献

[1] DING G P, LI X F, FANG D, et al. Etiology and ureteral reconstruction strategy for iatrogenic ureteral injuries: a retrospective single-center experience [J]. Urol Int, 2021, 105(5-6): 470-476.

[2] Paffenholz P, Heidenreich A. Modern surgical strategies in the management of complex ureteral strictures [J]. Curr Opin Urol, 2021, 31(2): 170-176. 

[3] Stief C G, Jonas U, Petry K U, et al. Ureteric reconstruction [J]. BJU Int, 2003, 91(2): 138-142. 

[4] Osman N I, Mangir N, Mironska E, et al. Robotic surgery as applied to functional and reconstructive urology [J]. Eur Urol Focus, 2019, 5(3): 322-328. 

[5] Daskalaki D, Aguilera F, Patton K, et al. Fluorescence in robotic surgery [J]. J Surg Oncol, 2015, 112(3): 250-256. 

[6] Stanga P E, Lim J I, Hamilton P. Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update [J]. Ophthalmology, 2003, 110(1): 15-21; quiz 22-23. 

[7] Desai N D, Miwa S, Kodama D, et al. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts [J]. J Thorac Cardiovasc Surg, 2006, 132(3): 585-594. 

[8] Gadus L, Kocarek J, Chmelik F, et al. Robotic partial nephrectomy with indocyanine green fluorescence navigation [J]. Contrast Media Mol Imaging, 2020. DOI: 10.1155/2020/1287530. 

[9] ZHANG S D, HONG P, WANG B S, et al. Usefulness of the indocyanine green fluorescence imaging technique in laparoscopic partial nephrectomy [J]. Beijing Da Xue Xue Bao Yi Xue Ban, 2020, 52(4): 657-662. 

[10] Pathak R A, Hemal A K. Developing a personalized template for lymph node dissection during radical prostatectomy [J]. Transl Androl Urol, 2018, 7(Suppl 4): S498-s504. 

[11] Lerchenberger M, Gundogar U, Al Arabi N, et al. Indocyanine green fluorescence imaging during partial adrenalectomy [J]. Surg Endosc, 2020, 34(5): 2050- 2055. 

[12] Pathak R A, Hemal A K. Intraoperative ICGfluorescence imaging for robotic-assisted urologic surgery: current status and review of literature [J]. International Urology and Nephrology, 2019, 51(5): 765-771. 

[13] Cacciamani G E, Shakir A, Tafuri A, et al. Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus [J]. World J Urol, 2020, 38(4): 883-896. 

[14] Kanabur P, Chai C, Taylor J. Use of Indocyanine green for intraoperative ureteral identification in nonurologic surgery [J]. JAMA Surg, 2020, 155(6): 520-521. 

[15] Stühler V, Bedke J, Stenzl A. Surgical reconstruction of the ureter [J]. Urologe A, 2019, 58(6): 651-657. 

[16] 吴晃 , 付宇强 , 何綦琪 , 等 . 舌黏膜在输尿管狭窄 修复中的应用 [J]. 国际泌尿系统杂志 , 2023, 43(4): 748-751. 

[17] Baddam D O, Ragi S D, Tsang S H, et al. Protocol for indocyanine green angiography [J]. Methods Mol Biol, 2023. DOI: 10.1007/978-1-0716-2651-1_16. 

[18] Cassese G, Troisi R I. Indocyanine green applications in hepato-biliary surgery [J]. Minerva Surg, 2021, 76(3): 199-201. 

[19] Mcumber H, Dabek R J, Bojovic B, et al. Burn depth analysis using indocyanine green fluorescence: a review [J]. J Burn Care Res, 2019, 40(4): 513-516. 

[20] Ferreira H, Smith A V, Wattiez A. Application of indocyanine green in gynecology: review of the literature [J]. Surg Technol Int, 2019. PMID: 31034577. 

[21] Bjurlin M A, Gan M, Mcclintock T R, et al. Nearinfrared fluorescence imaging: emerging applications in robotic upper urinary tract surgery [J]. Eur Urol, 2014, 65(4): 793-801. 

[22] Lee Z, Simhan J, Parker D C, et al. Novel use of indocyanine green for intraoperative, real-time localization of ureteral stenosis during robot-assisted ureteroureterostomy [J]. Urology, 2013, 82(3): 729-733. 

[23] HUANG B W, WANG J, ZHANG P, et al. Application of indocyanine green in complex upper urinary tract repair surgery [J]. Beijing Da Xue Xue Bao Yi Xue Ban, 2020, 52(4): 651-656. 

[24] 黄晨 , 陈昊 , 刘靓 , 等 . 吲哚菁绿荧光显影技术在 机器人辅助腹腔镜上尿路重建手术中的应用 [J]. 泌 尿外科杂志 ( 电子版 ), 2023, 15(1): 18-23. 

[25] Colvin J, Zaidi N, Berber E. The utility of indocyanine green fluorescence imaging during robotic adrenalectomy [J]. J Surg Oncol, 2016, 114(2): 153-156. 

[26] 左佳乐 , 何綦琪 , 李笑然 , 等 . 吲哚菁绿在泌尿外科 机器人手术中的应用 [J]. 临床泌尿外科杂志 , 2023, 38(2): 151-156.

本期文章
[1] 机器人辅助腹腔镜手术治疗肾结石及危险因素的研究进展 [2] 机器人辅助腹腔镜技术在腹股沟淋巴结切除术中的应用 [3] 智慧静脉药物配液机器人风险屏障机制探讨 [4] 手术机器人导航系统在皮肤真皮层抽脂中的应用 [5] 人工智能消化内镜系统辅助结肠息肉诊断的临床应用及影响因素分析 [6] 达芬奇机器人辅助全子宫切除术后患者正念影响因素的线性回归及改善策略分析 [7] 激励理论联合协同干预对天玑骨科手术机器人治疗后的颈脊髓损伤患者功能康复和应对倾向的影响 [8] 术中改良体位联合风险管理对机器人辅助下直肠癌根治术患者术后疼痛及并发症发生风险的影响 [9] 人工扶镜与机器人辅助扶镜下腹腔镜结直肠癌手术患者的临床疗效比较 [10] 机器人与腹腔镜辅助下肝切除手术对肝癌患者术后康复的效果对比 [11] 基于二元 Logistics 回归模型分析机器人辅助子宫 内膜癌术后并发症危险因素 [12] 机器人辅助手术在复杂大子宫中的应用及疗效分析(附手术视频) [13] 机器人辅助阴道骶骨固定术治疗重度盆腔器官脱垂的疗效分析(附手术视频) [14] 吲哚菁绿近红外荧光显影技术在机器人辅助腹腔镜上尿路修复重建手术中的应用(附手术视频) [15] 基于 ERAS 机器人辅助非体外循环冠状动脉旁路移植术的精准护理模式应用效果 [16] 机器人辅助腹腔镜膀胱癌根治术患者病耻感危险因素分析及护理对策 [17] 达芬奇机器人辅助下肝癌根治术的临床疗效及围手术期护理路径的构建 [18] 机器人辅助下结直肠癌根治术患者强化康复护理干预体会 [19] 激励式护理模式在经口入路机器人辅助甲状腺全麻手术患者中的实施及影响 [20] 早期肺癌患者行机器人辅助下肺癌根治术后并发症危险因素分析及护理对策 [21] 患者参与式护理干预应用于骨科机器人辅助髋臼骨折微创手术患者的临床效果 [22] Robocare 护理模式在达芬奇机器人辅助腹腔镜宫颈癌根治术全程护理中的应用 [23] 布比卡因脂质体注射与腹横肌平面阻滞治疗机器人辅助腹腔镜下妇科肿瘤手术后疼痛比较 [24] 超声引导下星状神经节阻滞对机器人辅助腹腔镜下前列腺癌根治术患者术中应激反应水平及术后认知功能恢复情况的影响 [25] 超声引导下腹横肌平面阻滞对机器人辅助全子宫切除术后疼痛的影响 [26] 鞘内吗啡镇痛与硬膜外镇痛对机器人辅助根治性膀胱切除术患者术后疼痛和并发症的影响 [27] 加速康复外科在腹膜外免 PORT 单切口机器人辅助根治性前列腺切除术围手术期的应用效果 [28] 人工智能辅助悬吊式无气腹单孔腹腔镜在妇科手术中的 应用价值 [29] 达芬奇机器人辅助下单孔与多孔腹腔镜手术治疗早期子宫内膜癌的疗效对比 [30] 达芬奇机器人 SP 系统在泌尿外科的应用与发展
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈