中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

机器人辅助手术在早期非小细胞肺癌治疗中的应用现状及前景

Application status and prospect of robot-assisted surgery in the treatment of early non-small cell lung cancer

作者:严坤 1 ,虞桂平 1 ,汪潜云

Vol. 5 No. 4 Aug. 2024 DOI: 10.12180/j.issn.2096-7721.2024.04.043 发布日期:2024-10-23
关键词:手术机器人;早期非小细胞肺癌;肺段切除术;远程手术

作者简介:

随着科技发展和理念更新,早期肺癌微创化、精准化治疗的认识已深入人心。以电视胸腔镜手术 (VATS)和机器人辅助胸外科手术(RATS)为代表的微创技术在早期肺癌的治疗中发挥着越来越重要的地位。 RATS 具有可以放大 10~15 倍的高清 3D 视野、灵活的操作臂和精确稳定的操作系统,克服了传统 VATS 的缺点,在 手术准确性和彻底性上与开放式手术不相上下。此外,RATS 在精确肺段切除方面也具有很大优势,其可以最大限 度地减少因技术限制或为规避风险而进行的不必要肺组织切除。当然,除了这些临床公认的优势外,随着机器人手 术系统与快速发展的 5G 通信相结合,进一步打破了传统手术的空间限制,使得“远程手术”不断完善,这对促进 医疗资源的下沉及医学技术的交流具有积极意义。本研究旨在就机器人手术在早期非小细胞肺癌治疗中应用现状及 前景进行综述。

With the advance of science and technology and renewal of concepts, minimally invasive and accurate treatment of early lung cancer has been widely accepted by public. Surgical technologies represented by video-assisted thoracoscopic surgery (VATS) and robot-assisted thoracic surgery (RATS) play a more and more important role in the treatment of early lung cancer. With its 3D high-definition vision, clear imaging, flexible operating arm and stable operating system, RATS overcomes the shortcomings of traditional VATS, and is comparable to open surgery in accuracy and thoroughness. In addition, RATS also has great advantages in accurate segmental pneumonectomy, which can minimize unnecessary pneumonectomy due to technical limitations or risk avoidance. Furthermore, the combination of robotic surgery and 5G communication technology also enables operators to perform telesurgeries, it breaks the limitations of time and space of surgeries, and promotes the exchange of medical technology, as well as contributes to rational distribution of medical resources. The application status and prospect of robotic surgery in the treatment of early non-small cell lung cancer is reviewed in this study.

稿件信息

收稿日期:2023-05-10  录用日期:2023-11-15 

Received Date: 2023-05-10  Accepted Date: 2023-11-15 

基金项目:江苏省重大疾病生物资源样本库肺癌子库开放课题(SBK202004006);2022 年江苏省研究生科研与实践创新计划项 目(SJCX22_1283) 

Foundation Item: Lung Cancer Sub-Bank Opening Project of Biological Resources Sample Bank on Major Diseases in Jiangsu Province(SBK202004006); Postgraduate Research and Practice Innovation Plan Program of Jiangsu Province in 2022 (SJCX22_1283) 

通讯作者:虞桂平,Email:xiaoyuer97103@163.com;汪潜云,Email:wqy1976@163.com 

Corresponding Author: YU Guiping, Email: xiaoyuer97103@163.com; WANG Qianyun, Email: wqy1976@163.com 

引用格式:严坤,虞桂平,汪潜云 . 机器人辅助手术在早期非小细胞肺癌治疗中的应用现状及前景 [J]. 机器人外科学杂志(中英文), 2024,5(4):734-738. 

Citation: YAN K, YU G P, WANG Q Y. Application status and prospect of robot-assisted surgery in the treatment of early nonsmall cell lung cancer[J]. Chinese Journal of Robotic Surgery, 2024, 5(4): 734-738.

参考文献

[1] Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. 

[2] Achudan S, Kwek E B K. A novel technique for supplementing transosseous suture repair of inferior pole patella fractures with a tension band[J]. Indian J Orthop, 2020, 54(Suppl 2): 322-327. 

[3] Chatzidionysiou K, di Giuseppe D, Soderling J, et al. Risk of lung cancer in rheumatoid arthritis and in relation to autoantibody positivity and smoking[J]. RMD Open, 2022, 8(2): e002465. 

[4] Ettinger D S, Wood D E, Aisner D L, et al. Non-Small Cell Lung Cancer, Version 

3.2022, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2022, 20(5): 497-530. 

[5] Nguyen D, Gharagozloo F, Tempesta B, et al. Long-term results of robotic anatomical segmentectomy for early-stage non-small-cell lung cancer[J]. Eur J Cardiothorac Surg, 2019, 55(3): 427-433. 

[6] Kneuertz P J, D’Souza D M, Richardson M, et al. Long-term oncologic outcomes after robotic lobectomy for early-stage nonsmall-cell lung cancer versus video-assisted thoracoscopic and open thoracotomy approach[J]. Clin Lung Cancer, 2020, 21(3): 214-224. e212. 

[7] Chansky K, Detterbeck F C, Nicholson A G, et al. The IASLC lung cancer staging project: external validation of the revision of the TNM Stage groupings in the eighth edition of the TNM classification of lung cancer[J]. J Thorac Oncol, 2017, 12(7): 1109-1121.

[8] MA J L, LI X Y, ZHAO S F, et al. Robot-assisted thoracic surgery versus video-assisted thoracic surgery for lung lobectomy or segmentectomy in patients with non-small cell lung cancer: a metaanalysis[J]. BMC Cancer, 2021, 21(1): 498. 

[9] Terra R M, Araujo P, Lauricella L L, et al. A Brazilian randomized study: robotic-assisted vs. video-assisted lung lobectomy outcomes (BRAVO trial)[J]. J Bras Pneumol, 2022, 48(4): e20210464. 

[10] Tajè R, Gallina F T, Forcella D, et al. Multimodal evaluation of locoregional anaesthesia efficacy on postoperative pain after robotic pulmonary lobectomy for NSCLC: a pilot study[J]. J Robot Surg, 2023. DOI: 10.1007/s11701-023-01578-y. 

[11] XU J M, NI H, WU Y H, et al. Perioperative comparison of videoassisted thoracic surgery and open lobectomy for pT1-stage non-small cell lung cancer patients in China: a multi-center propensity scorematched analysis[J]. Transl Lung Cancer Res, 2021, 10(1): 402-414. 

[12] Kirby T J, Mack M J, Landreneau R J, et al. Initial experience with video-assisted thoracoscopic lobectomy[J]. Ann Thorac Surg, 1993; 56(6): 1248-1252. 

[13] LUO J Z, JI C Y, Campisi A, et al. Surgical outcomes of videoassisted versus open pneumonectomy for lung cancer: a real-world study[J]. Cancers (Basel), 2022, 14(22): 5683. 

[14] Nwogu C E, D’Cunha J, Pang H, et al. VATS lobectomy has better perioperative outcomes than open lobectomy: CALGB 31001, an ancillary analysis of CALGB 140202 (Alliance) [J]. Ann Thorac Surg, 2015, 99(2): 399-405.

[15] Lim E, Harris R A, McKeon H E, et al. Impact of video-assisted thoracoscopic lobectomy versus open lobectomy for lung cancer on recovery assessed using self-reported physical function: VIOLET RCT[J]. Health Technol Assess, 2022, 26(48): 1-162. 

[16] Ettinger D S, Bepler G, Bueno R, et al. Non-small cell lung cancer clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2006, 4(6): 548-582. 

[17] Kagimoto A, Tsutani Y, Izaki Y, et al. Initial experience of robotic anatomical segmentectomy for non-small cell lung cancer[J]. Jpn J Clin Oncol, 2020, 50(4): 440-445. 

[18] Nelson D B, Mehran R J, Mitchell K G, et al. Robotic-assisted lobectomy for non-small cell lung cancer: a comprehensive institutional experience[J]. Ann Thorac Surg, 2019, 108(2): 370-376. 

[19] Reddy R M, Gorrepati M L, Oh D S, et al. Robotic-assisted versus thoracoscopic lobectomy outcomes from high-volume thoracic surgeons[J]. Ann Thorac Surg, 2018, 106(3): 902-908. 

[20] Louie B E, Wilson J L, Kim S, et al. Comparison of video-assisted thoracoscopic surgery and robotic approaches for clinical stage I and stage II non-small cell lung cancer using The Society of Thoracic Surgeons Database[J]. Ann Thorac Surg, 2016, 102(3): 917-924. 

[21] Novellis P, Bottoni E, Voulaz E, et al. Robotic surgery, video-assisted thoracic surgery, and open surgery for early stage lung cancer: comparison of costs and outcomes at a single institute[J]. J Thorac Dis, 2018, 10(2): 790-798. 

[22] Veronesi G, Park B, Cerfolio R, et al. Robotic resection of stage III lung cancer: an international retrospective study[J]. Eur J Cardiothorac Surg, 2018, 54(5): 912-919. 

[23] Meccariello G, Faedi F, AlGhamdi S, et al. An experimental study about haptic feedback in robotic surgery: may visual feedback substitute tactile feedback? [J]. J Robot Surg, 2016, 10(1): 57-61. 

[24] Jensik R J, Faber L P, Milloy F J, et al. Segmental resection for lung cancer. A fifteen-year experience[J]. J Thorac Cardiovasc Surg, 1973, 66(4): 563-572. 

[25] Onaitis M W, Furnary A P, Kosinski A S, et al. Equivalent survival between lobectomy and segmentectomy for clinical stage IA lung cancer[J]. Ann Thorac Surg, 2020, 110(6): 1882-1891. 

[26] Suzuki K, Saji H, Aokage K, et al. Comparison of pulmonary segmentectomy and lobectomy: safety results of a randomized trial[J]. J Thorac Cardiovasc Surg, 2019, 158(3): 895-907. 

[27] Altorki N K, Wang X, Wigle D, et al. Perioperative mortality and morbidity after sublobar versus lobar resection for early-stage non-small-cell lung cancer: post-hoc analysis of an international, randomised, phase 3 trial (CALGB/Alliance 140503) [J]. Lancet Respir Med, 2018, 6(12): 915-924. 

[28] Veronesi G. Robotic lobectomy and segmentectomy for lung cancer: results and operating technique[J]. J Thorac Dis, 2015, 7(Suppl 2): S122-130. 

[29] Ferrari-Light D, Geraci T C, Sasankan P, et al. The utility of near-infrared fluorescence and Indocyanine green during robotic pulmonary resection[J]. Front Surg, 2019. DOI: 10.3389/ fsurg.2019.00047. 

[30] Pardolesi A, Veronesi G, Solli P, et al. Use of indocyanine green to facilitate intersegmental plane identification during robotic anatomic segmentectomy[J]. J Thorac Cardiovasc Surg, 2014, 148(2): 737-738. 

[31] Mehta M, Patel Y S, Yasufuku K, et al. Near-infrared mapping with indocyanine green is associated with an increase in oncological margin length in minimally invasive segmentectomy[J]. J Thorac Cardiovasc Surg, 2019, 157(5): 2029-2035. 

[32] Watkins A A, Quadri S M, Servais E L. Robotic-assisted complex pulmonary resection: sleeve lobectomy for cancer[J]. Innovations (Phila), 2021, 16(2): 132-135. 

[33] Zhou N, Corsini E M, Antonoff M B, et al. Robotic surgery and anatomic segmentectomy: an analysis of trends, patient selection, and outcomes[J]. Ann Thorac Surg, 2022, 113(3): 975-983. 

[34] Kato H, Oizumi H, Suzuki J, et al. Thoracoscopic anatomical lung segmentectomy using 3D computed tomography simulation without tumour markings for non-palpable and non-visualized small lung nodules[J]. Interact Cardiovasc Thorac Surg, 2017, 25(3): 434-441. 

[35] JI Y, ZHANG T, YANG L, et al. The effectiveness of threedimensional reconstruction in the localization of multiple nodules in lung specimens: a prospective cohort study[J]. Transl Lung Cancer Res, 2021, 10(3): 1474-1483. 

[36] HE H, WANG F, WANG P Y, et al. Anatomical analysis of variations in the bronchus pattern of the left upper lobe using three-dimensional computed tomography angiography and bronchography[J]. Ann Transl Med, 2022, 10(6): 305. 

[37] WANG B, GUO Y W, TANG J Q, et al. Three-dimensional custommade carbon-fiber prosthesis for sternal reconstruction after sarcoma resection[J]. Thorac Cancer, 2019, 10(6): 1500-1502.

[38] LI C W, HU Y J, HUANG J, et al. Comparison of robotic-assisted lobectomy with video-assisted thoracic surgery for stage IIB-IIIA non-small cell lung cancer[J]. Transl Lung Cancer Res, 2019, 8(6): 820-828. 

[39] JIN R S, ZHENG Y Y, YUAN Y, et al. Robotic-assisted Versus Video-assisted Thoracoscopic Lobectomy: Short-term Results of a Randomized Clinical Trial (RVlob Trial) [J]. Ann Surg, 2022, 275(2): 295-302. 

[40] Cerfolio R J, Watson C, Minnich D J, et al. One hundred planned robotic segmentectomies: early results, technical details, and preferred port placement[J]. Ann Thorac Surg, 2016, 101(3): 1089- 1095. 

[41] Medbery R L, Gillespie T W, Liu Y, et al. Nodal upstaging is more common with thoracotomy than with VATS during lobectomy for early-stage lung cancer: an analysis from the National Cancer Data Base[J]. J Thorac Oncol, 2016, 11(2): 222-233. 

[42] Zirafa C, Aprile V, Ricciardi S, et al. Nodal upstaging evaluation in NSCLC patients treated by robotic lobectomy[J]. Surg Endosc, 2019, 33(1): 153-158. 

[43] ZHANG Y J, CHEN C, HU J, et al. Early outcomes of robotic versus thoracoscopic segmentectomy for early-stage lung cancer: a multi-institutional propensity score-matched analysis[J]. J Thorac Cardiovasc Surg, 2020, 160(5): 1363-1372. 

[44] Matsumoto J, Hiyama N, Yanagiya M. The Current Status and Future of Robot-assisted Thoracic Surgery[J]. Kyobu Geka, 2020, 73(4): 250-255.

[45] Meyer M, Gharagozloo F, Tempesta B, et al. The learning curve of robotic lobectomy[J]. Int J Med Robot, 2012, 8(4): 448-452. 

[46] Toker A, Özyurtkan M O, Kaba E, et al. Robotic anatomic lung resections: the initial experience and description of learning in 102 cases[J]. Surg Endosc, 2016, 30(2): 676-683. 

[47] Gómez Hernández M T, Fuentes Gago M, Novoa Valentín N, et al. Robotic anatomical lung resections: Analysis of the learning curve[J]. Cir Esp (Engl Ed), 2021, 99(6): 421-427. 

[48] Marescaux J, Leroy J, Rubino F, et al. Transcontinental robotassisted remote telesurgery: feasibility and potential applications[J]. Ann Surg, 2002, 235(4): 487-492. 

[49] 唐粲 , 王田苗 , 丑武胜 , 等 . 脑外科机器人控制系统的设计和实 现 [J]. 机器人 , 2004, 26(6): 543-547+552. 

[50] 王军强 , 赵春鹏 , 胡磊 , 等 . 远程外科机器人辅助胫骨髓内钉内 固定系统的初步应用 [J]. 中华骨科杂志 , 2006(10): 682-686. 

[51] 安芳芳 , 荆朝侠 , 彭燕 , 等 . 达芬奇机器人的“前世、今生、来 世”[J]. 中国医疗设备 , 2020, 35(7): 148-151+168. 

本期文章
[1] 国产手术机器人辅助下 McKeown 食管癌切除术:海南省首例报道(附手术视频) [2] 达芬奇 Xi 手术机器人辅助单孔腹腔镜治疗早产低体重儿十二指肠梗阻:全球首例报道(附手术视频) [3] 直肠癌术后低位前切除综合征研究进展及机器人手术现状 [4] 机器人辅助腹腔镜治疗儿童肾积水的研究进展 [5] 机器人辅助手术在早期非小细胞肺癌治疗中的应用现状及前景 [6] 口腔种植机器人的应用现状与研究进展 [7] 机器人辅助心脏手术的困境与未来 [8] 加速康复外科理念在机器人辅助腹腔镜肾盂成形术患儿围手术期中的应用 [9] 基于渥太华研究应用模式的机器人辅助胃癌根治术临床护理应用方案构建 [10] 医护一体化在达芬奇机器人辅助肝癌术后放疗患者中的应用研究 [11] MAKO 机器人辅助全髋关节置换术患者预防 DVT 的护理策略构建及实施效果探讨 [12] 基于循证理念的无缝隙护理在机器人辅助根治性膀胱全切术患者围手术期中的应用 [13] 思维导图在机器人手术室护士培训中的应用与效果评价 [14] 系统教学模式对机器人辅助下泌尿系统肿瘤患者预康复的影响 [15] 护理机器人辅助分析胃癌术后导尿管拔除时间对患者加速康复的影响 [16] 不同方式申领达芬奇手术机器人一次性耗材的效果对比 [17] 达芬奇机器人辅助腹腔镜下改良 Swenson 术治疗先天性巨结肠症的疗效研究 [18] 机器人辅助腹腔镜与传统腹腔镜手术治疗妊娠期 附件包块的临床对比研究 [19] 机器人辅助腹腔镜胃间质瘤切除术的临床疗效分析 [20] 基于移动医疗模式下的精准管理在达芬奇机器人辅助腹腔镜肾移植术后血液净化患者中的应用 [21] 综合干预对达芬奇机器人经腋窝乳晕入路甲状腺全麻手术患者情绪及疼痛的影响 [22] 改良 Trocar 布局的单一体位技术在机器人辅助腹腔镜上尿路尿路上皮癌治疗中的有效性和安全性分析 [23] 达芬奇 Xi 手术机器人在肾部分切除术中手术入路选择的应用研究(附手术视频) [24] 机器人辅助腹腔镜手术在复杂大子宫切除术中的应用探讨(附手术视频) [25] 达芬奇机器人辅助肾部分切除术后急性肾损伤风险预测模型构建及预防策略研究 [26] 不同麻醉方法在机器人辅助小儿肾盂成形术中的应用 [27] 超声引导下腰方肌阻滞在子宫肌瘤患者机器人辅助手术中的镇痛效果、应激水平及苏醒质量相关分析 [28] 右美托咪定术中静脉推注剂量对达芬奇机器人经口腔前庭入路甲状腺切除患者瑞芬太尼诱导的输注后痛觉过敏的影响 [29] PiCCO 指导下液体治疗对机器人辅助胃肠手术老年患者术中组织灌注及术后恢复质量的影响 [30] 机器人辅助腹腔镜宫颈癌根治术围手术期管理实践 [31] 机器人辅助广泛性子宫切除术对早期宫颈癌患者围术期指标的影响 [32] 机器人辅助腹腔镜下根治性手术对早期宫颈癌患者术后盆底功能的影响 [33] 膜解剖理念相较于传统解剖理念在机器人辅助腹腔镜下宫颈癌根治术中的优势探讨(附手术视频) [34] 机器人手术系统在早期宫颈癌保留生育功能手术中的应用(附手术视频) [35] 骨盆辅助式机器人训练对急性期脑梗死患者步行与躯干控制功能的影响 [36] 康复机器人联合自助式康复训练对股骨骨折患者术后髋关节功能恢复情况的影响 [37] 机器人辅助步态训练护理对老年烧伤后下肢功能障碍患者的疗效影响 [38] 上肢机器人辅助作业疗法对脑卒中偏瘫患者上肢功能及日常生活活动能力的影响 [39] 经颅磁刺激联合下肢康复机器人对脑卒中患者下肢功能康复的效果观察 [40] LEARNS 模式联合盆底肌训练在机器人辅助根治性前列腺切除术患者中的应用价值 [41] 渐进式阻力运动训练在机器人辅助根治性前列腺切除术患者中的应用 [42] 顺逆结合机器人辅助最大程度保留前列腺周围结构的根治性前列腺切除术(附手术视频) [43] 机器人辅助根治性前列腺切除术治疗大体积局限性前列腺癌的效果分析(附手术视频) [44] 机器人辅助根治性前列腺切除术后前列腺包膜外侵犯的预测因素分析(附手术视频) [45] 改良(免特殊 PORT)机器人辅助腹腔镜单切口根治性前列腺切除术临床应用(附手术视频) [46] 保留近端尿道及无热前列腺切除策略在机器人辅助根治性前列腺切除术中的应用(附手术视频) [47] 基于 mpMRI 评估机器人辅助腹腔镜根治性前列腺切除术后早期尿控的影响因素
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈