目的:分析近十年国内外智能可穿戴运动康复系统在康复医学领域的研究热点及趋势。方法:采用 CiteSpace 软件对 2014 年 10 月—2023 年 10 月中国知网及 Web of Science(WoS)数据库中关于智能可穿戴运动康复 系统在康复医学领域的研究进行可视化分析,主要分析内容包括发文量、作者、机构、共被引、研究热点等,同时 绘制相应的知识图谱。结果:共纳入中文文献 527 篇(年均 53 篇),10 个关键词聚类和 18 个突现词,其 Q 值为 0.5527, S 值为 0.8561;共纳入英文文献 633 篇(年均 63 篇),8 个关键词聚类和 18 个突现词,其 Q 值为 0.3824,S 值为 0.7096。 结论:智能可穿戴运动康复系统可运用人工智能技术增强康复效果,并结合人机交互和虚拟现实,提高临床治疗效率。 未来可视化、一体化、数字化、个体化和家庭化的智能运动康复系统是我国在智能可穿戴运动康复系统的重要研究 方向和发展趋势。
Objective: To analyze the research hotspots and trends of intelligent wearable sports rehabilitation systems in the field of rehabilitation medicine at home and abroad in the past 10 years. Methods: CiteSpace software was used to visualize and analyze researches on intelligent wearable sports rehabilitation systems in the field of rehabilitation medicine published in China National Knowledge Infrastructure (CNKI) and Web of Science (WoS) databases from October 2014 to October 2023. The main analysis contents were the number of published articles, authors, institutions, co-citations and research hotspots, and corresponding knowledge graphs were also drawn. Results: In the past 10 years, there were a total of 527 Chinese literatures related to intelligent wearable sports rehabilitation systems in the field of rehabilitation medicine (annual average of 53), including 10 keyword clusters and 18 keywords with the strongest citation bursts, with the Q value of 0.5527 and S value of 0.8561. There were a total of 633 English literature articles (annual average of 63), including 8 keyword clusters and 18 keywords with the strongest citation bursts, with the Q-value of 0.3824 and S-value of 0.7096. Conclusion: The intelligent wearable sports rehabilitation system assisted by artificial intelligence technology can enhance rehabilitation efficacy. Combining with human-computer interaction and virtual reality technologies, it can improve clinical treatment efficiency. In the future, the development of visualized, integrated, digitized, personalized, and home-based intelligent sports rehabilitation systems will be an important research direction in China.
收稿日期:2024-03-29 录用日期:2024-05-09
Received Date: 2024-03-29 Accepted Date: 2024-05-09
基金项目:国家重点研发计划 (2022YFC3601105)
Foundation Item: National Key R&D Plan (2022YFC3601105)
通讯作者:潘钰,Email:py10335@163.com
Corresponding Author: PAN Yu, Email: py10335@163.com
引用格式:李硕,唐明坤,潘钰 . 基于 CiteSpace 的智能可穿戴运动康复系统在康复医学领域的研究热点与趋势分析 [J]. 机器人外 科学杂志(中英文),2024,5(5):864-870.
Citation: LI S, TANG M K, PAN Y. Research hotspots and trend analysis on intelligent wearable sports rehabilitation systems based on CiteSpace in the field of rehabilitation medicine[J]. Chinese Journal of Robotic Surgery, 2024, 5(5): 864-870.
[1] 江辉 , 刘荻 , 包倪荣 . 智慧康复系统在军事训练损伤中的有效 性 [J]. 医学研究与战创伤救治 , 2023, 36(7): 681-684.
[2] 匡绍龙 , 房银芳 , 周瑞 , 等 . 可穿戴技术应用于术后监控和康复 的现状分析 [J]. 科技导报 , 2017, 35(2): 55-59.
[3] CHEN C M.CiteSpace Ⅱ : detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57 (3): 359-377.
[4] 杨坤 , 甘丽华 , 郭超峰 . 基于 Citespace 软件的消化性溃疡研究 的可视化分析 [J]. 实用临床医药杂志 , 2021, 25(5): 1-6.
[5] 陈悦 , 陈超美 , 刘则渊 , 等 .CiteSpace 知识图谱的方法论功能 [J]. 科学学研究 , 2015, 33(2): 242-253.
[6] 焦宗琪 , 孟巧玲 , 邵海存 , 等 . 上肢康复训练与生活辅助机器人 的设计与研究 [J]. 中国康复医学杂志 , 2022, 37(9): 1219-1222.
[7] 刘壮 , 朱纯煜 , 朱越 , 等 . 基于多传感器信息的新型穿戴式 上肢外骨骼康复机器人 [J]. 北京生物医学工程 , 2021, 40(3): 273-278.
[8] 朱玉迪 , 孟巧玲 , 胡杰 , 等 . 基于人体动力学模型的下肢康复机 器人控制方法 [J]. 生物医学工程学进展 , 2023, 44(3): 294-300.
[9] Edwards D J, Forrest G, Cortes M, et al. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial[J]. Spinal Cord, 2022, 60(6): 522-532.
[10] Hohl K, Giffhorn M, Jackson S, et al. A framework for clinical utilization of robotic exoskeletons in rehabilitation[J]. J Neuroeng Rehabil, 2022, 19(1): 115.
[11] O’Brien M K, Shin S Y, Khazanchi R, et al. Wearable sensors improve prediction of post-stroke walking function following inpatient rehabilitation[J]. IEEE J Transl Eng Health Med, 2022.DOI: 10.1109/ JTEHM.2022.3208585.
[12] 刘毅 . 近 20 年我国舆论学研究进展的知识图谱分析——基于 CSSCI 数据库 (1994-2013)[J]. 情报杂志 , 2015, 34(5): 169-173, 184.
[13] Chow R, Drkulec H, Im J H B, et al.The use of wearable devices in oncology patients: a systematic review[J].The Oncologist, 2024, 29(4), e419-e430.
[14] Toh S F M, Fong K N K, Gonzalez P C, et al. Application of homebased wearable technologies in physical rehabilitation for stroke: a scoping review[J]. Neural Systems and Rehabilitation Engineering, 2023. DOI: 10.1109/TNSRE.2023.3252880.
[15] De Fazio R, Mastronardi V M, De Vittorio M, et al. Wearable sensors and smart devices to monitor rehabilitation parameters and sports performance: an overview[J]. Sensors, 2023, 23(4): 1856.
[16] Spasojević S, Ilić T V, Milanović S, et al. Combined vision and wearable sensors-based system for movement analysis in rehabilitation[J].Methods Inf Med, 2017, 56(2): 95-111.
[17] Milosevic B, Leardini A, Farella E. Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison[J]. BioMed Eng OnLine, 2020, 19(1): 25.
[18] Calabrò R S, Sorrentino G, Cassio A, et al. Robotic-assisted gait rehabilitation following stroke: a systematic review of current guidelines and practical clinical recommendations[J]. Eur J Phys Rehabil Med, 2021, 57(3): 460-471.
[19] Morone G, Girardi S, Ghooshchy S G, et al.Wearable devices and virtual reality for neurorehabilitation: an opportunity for home rehabilitation[J]. Converging Clinical and Engineering Research on Neurorehabilitation III, 2018, 10(16): 601-605.
[20] 王晓青 , 孟殿怀 , 赵磊 , 等 . 智能可穿戴运动康复系统 uCare 在脑卒中患者社区康复中的应用效果 [J]. 中国康复医学杂志 , 2019, 34(10): 1188-1192.
[21] 马良飞 , 何蓬莉 , 曾西西 , 等 . 基于虚拟现实的下肢机器人多任 务步态训练平台在早期偏瘫患者中的应用 [J]. 北京生物医学工 程 , 2022, 41(5): 495-499, 505.
[22] Park Y S, An C S, Lim C G. Effects of a rehabilitation program using a wearable device on the upper limb function, performance of activities of daily living, and rehabilitation participation in patients with acute stroke[J]. Int J Environ Res Public Health, 2021, 18(11): 5524.
[23] Maceira-Elvira P, Popa T, Schmid A C, et al. Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment[J]. J Neuroeng Rehabil, 2019, 16(1): 142.
[24] Prasanth H, Caban M, Keller U, et al. Wearable sensor-based realtime gait detection: a systematic review[J]. Sensors (Basel), 2021, 21(8): 2727.
[25] Gurumoorthy K B, Rajasekaran A S, Kalirajan K, et al. Wearable sensor data classification for identifying missing transmission sequence using tree learning[J]. Sensors (Basel), 2023, 3(10): 4924.
[26] PENG Z Q, ZHENG S J, ZHANG X, et al. Flexible wearable pressure sensor based on collagen fiber material[J]. Micromachines (Basel), 2022, 13(5): 694.