目的:探究接受双孔机器人手术(DRATS)和单孔胸腔镜手术(UVATS)对非小细胞肺癌患者的成本效益。方法:选取 2021 年 1 月—2022 年 10 月于青岛市市立医院接受手术的非小细胞肺癌(NSCLC)患者作为研究对象。根据手术方式的不同 将其分为 DRATS 组和 UVATS 组,利用马尔科夫决策模型,对 NSCLC 患者术后 1 年和第 2 年的疾病进展进行模拟分析,以 评估患者的医疗成本和收益,探讨 DRATS 与 UVATS 的成本效益。结果:在术后 1 年内,DRATS 组相较于 UVATS 组增加了 0.01 质量调整生命年(QALY),增量成本效益比(ICER)为 57 307.00 USD /QALY。在术后 2 年内,DRATS 组额外支付了 1720.26 USD,增加了 0.04 QALY,DRATS 组的 ICER 为 43 006.50 USD /QALY。学习曲线也对 DRATS 组的成本效益有影响。 根据山东省的支付意愿,DRATS 组不具有明显的成本效益。结论:DRATS 能使患者获得更好的生活质量,从术后 2 年随访 结果来看,接受 DRATS 的患者获益逐渐增加。此外,主刀医生丰富的手术经验和手术团队的融洽合作有助于提高 DRATS 的 成本效益。然而,DRATS 最明显的劣势是昂贵的手术费用,这导致 DRATS 在社会经济水平较发达的城市更具有成本效益。
Objective: To explore the cost-effectiveness of dual-portal robot-assisted thoracic surgery (DRATS) versus uniportal videoassisted thoracic surgery (UVATS) in patients undergoing these procedures. Methods: Patients with non-small cell lung cancer (NSCLC) who underwent surgery at Qingdao Municipal Hospital from January to and October 2022 were enrolled. They were divided into the DRATS group and the UVATS group based on different surgical approaches. A Markov decision process model was developed to simulate disease progression during the first and second year after surgery, assessing medical costs and outcomes to evaluate the cost-effectiveness of DRATS versus UVATS. Results: Within the first year after surgery, the DRATS group gained 0.01 additional quality-adjusted life years (QALYs) compared to the UVATS group, with an incremental cost-effectiveness ratio (ICER) of 57 307.00 USD/QALY. Over a twoyear postoperative period, the DRATS group incurred an incremental cost of 1720.26 USD and gained 0.04 additional QALYs, resulting in an ICER of 43 006.50 USD/QALY. The cost-effectiveness of DRATS is also influenced by the learning curve. Based on the willingnessto-pay threshold in Shandong Province, DRATS did not demonstrate significant cost-effectiveness. Conclusion: DRATS could improve patients’ quality of life, with incremental benefits over a two-year follow-up. Surgeons’ extensive experience and cohesive teamwork can enhance the cost-effectiveness of DRATS. However, the high costs of DRATS remain a critical limitation, rendering it more cost-effective in socioeconomically developed regions.
基金项目:国家自然科学基金(2204152)
Foundation Item: National Natural Science Foundation of China(2204152)
引用格式:王树民,李飞,褚恒,等 . 双孔机器人手术与单孔胸腔镜手术治疗非小细胞肺癌的成本效益分析 [J]. 机器人外科学杂志(中英文), 2025,6(3):383-387.
Citation: WANG S M, LI F, CHU H, et al. Cost-effectiveness analysis of dual-portal robot-assisted thoracic surgery and uniportal videoassisted thoracoscopic surgery in the treatment of non-small cell lung cancer [J]. Chinese Journal of Robotic Surgery, 2025, 6(3): 383-387.
通讯作者(Corresponding Author):张哲(ZHANG Zhe),Email:zhang-elu@163.com
[1] NING Y, CHEN Z G, ZHANG W T, et al. Short-term outcomes of uniportal robotic-assisted thoracic surgery anatomic pulmonary resections: experience of Shanghai Pulmonary Hospital[J]. Ann Cardiothorac Surg, 2023, 12(2): 117-125.
[2] Manolache V, Motas N, Bosinceanu M L, et al. Comparison of uniportal robotic-assisted thoracic surgery pulmonary anatomic resections with multiport robotic-assisted thoracic surgery: a multicenter study of the European experience[J]. Ann Cardiothorac Surg, 2023, 12(2): 102-109.
[3] Palleschi A, Mattioni G, Mendogni P, et al. A real-world experience of transition to robotic-assisted thoracic surgery (RATS) for lung resections[J]. Front Surg, 2023. DOI: 10.3389/fsurg.2023.1127627.
[4] Shahin G M M, Vos P W K, Hutteman M, et al. Robot-assisted thoracic surgery for stages IIB-IVA non-small cell lung cancer: retrospective study of feasibility and outcome[J]. J Robot Surg, 2023, 17(4): 1587-1598.
[5] WU H, JIN R S, YANG S, et al. Long-term and short-term outcomes of robot-versus video-assisted anatomic lung resection in lung cancer: a systematic review and Meta-analysis[J]. Eur J Cardiothorac Surg, 2021, 59(4): 732-740.
[6] Kent M S, Hartwig M G, Vallières E, et al. Pulmonary open, robotic, and thoracoscopic lobectomy (PORTaL) study: an analysis of 5721 cases[J]. Ann Surg, 2023, 277(3): 528-533.
[7] PAN H B, ZHANG J Q, TIAN Y, et al. Short- and long-term outcomes of robotic-assisted versus video-assisted thoracoscopic lobectomy in nonsmall cell lung cancer patients aged 35 years or younger: a real-world study with propensity score-matched analysis[J]. J Cancer Res Clin Oncol, 2023, 149(12): 9947-9958.
[8] ZHOU J C, WANG W P, WU S Q, et al. Clinical efficacy of thoracoscopic surgery with the Da Vinci surgical system versus video-assisted thoracoscopic surgery for lung cancer[J]. J Oncol, 2022. DOI: 10.1155/2022/5496872.
[9] HUANG J, TIAN Y, ZHOU Q J, et al. Comparison of perioperative outcomes of robotic-assisted versus video-assisted thoracoscopic right upper lobectomy in non-small cell lung cancer[J]. Transl Lung Cancer Res, 2021, 10(12): 4549-4557.
[10] Heiden B T, Mitchell J D, Rome E, et al. Cost-effectiveness analysis of robotic-assisted lobectomy for non-small cell lung cancer[J]. Ann Thorac Surg, 2022, 114(1): 265-272.
[11] Lim E, Harris R A, Mckeon H E, et al. Impact of video-assisted thoracoscopic lobectomy versus open lobectomy for lung cancer on recovery assessed using self-reported physical function: VIOLET RCT[J]. Health Technol Assess, 2022, 26(48): 1-162.
[12] Yang H X, Woo K M, Sima C S, et al. Long-term survival based on the surgical approach to lobectomy for clinical stage I nonsmall cell lung cancer: comparison of robotic, video-assisted thoracic surgery, and thoracotomy lobectomy[J]. Ann Surg, 2017, 265(2): 431-437.
[13] Watanabe H, Ebana H, Kanauchi N, et al. Dual-portal robotic-assisted thoracic surgery (DRATS) as a reduced port RATS: early experiences in three institutions in Japan[J]. J Thorac Dis, 2023, 15(12): 6475-6482.
[14] Gómez-Hernández M T, Fuentes M G, Novoa N M, et al. The robotic surgery learning curve of a surgeon experienced in video-assisted thoracoscopic surgery compared with his own video-assisted thoracoscopic surgery learning curve for anatomical lung resections[J]. Eur J Cardiothorac Surg, 2022, 61(2): 289-296.
[15] LI J T, LIU P Y, HUANG J, et al. Perioperative outcomes of radical lobectomies using robotic-assisted thoracoscopic technique vs. videoassisted thoracoscopic technique: retrospective study of 1, 075 consecutive p-stage I non-small cell lung cancer cases[J]. J Thorac Dis, 2019, 11(3): 882-891.
[16] Le Gac C, Gondé H, Gillibert A, et al. Medico-economic impact of robotassisted lung segmentectomy: what is the cost of the learning curve?[J]. Interact Cardiovasc Thorac Surg, 2020, 30(2): 255-262.
[17] Kneuertz P J, Singer E, D’souza D M, et al. Hospital cost and clinical effectiveness of robotic-assisted versus video-assisted thoracoscopic and open lobectomy: a propensity score-weighted comparison[J]. J Thorac Cardiovasc Surg, 2019, 157(5): 2018-2026.e2.
[18] LUO G Y, LIAO D, LIN W J, et al. Cost analysis of supply chain management of Da Vinci surgical instruments: a retrospective study[J]. Technol Health Care, 2022, 30(5): 1233-1241.
[19] Sanchez A, Herrera L, Teixeira A, et al. Robotic surgery: financial impact of surgical trays optimization in bariatric and thoracic surgery[J]. J Robot Surg, 2023, 17(1): 163-167.
[20] CHEN D L, KANG P M, TAO S L, et al. Cost-effectiveness evaluation of robotic-assisted thoracoscopic surgery versus open thoracotomy and videoassisted thoracoscopic surgery for operable non-small cell lung cancer[J]. Lung Cancer, 2021. DOI: 10.1016/j.lungcan.2020.12.033.
[21] Kneuertz P J, Singer E, D’souza D M, et al. Postoperative complications decrease the cost-effectiveness of robotic-assisted lobectomy[J]. Surgery, 2019, 165(2): 455-460.
[22] Brunelli A, Chapman K, Pompili C, et al. Ninety-day hospital costs associated with prolonged air leak following lung resection[J]. Interact Cardiovasc Thorac Surg, 2020, 31(4): 507-512.
[23] Coyan G N, Lu M, Ruppert K M, et al. Activity-based cost analysis of robotic anatomic lung resection during program implementation[J]. Ann Thorac Surg, 2022, 113(1): 244-249.
[24] Veluswamy R R, Whittaker Brown S A, Mhango G, et al. Comparative effectiveness of robotic-assisted surgery for resectable lung cancer in older patients[J]. Chest, 2020, 157(5): 1313-1321.
[25] Eichhorn M, Bernauer E, Rotärmel A, et al. Clinical effectiveness of robotic-assisted compared to open or video-assisted lobectomy in Germany: a real-world data analysis[J]. Interdiscip Cardiovasc Thorac Surg, 2024, 38(1) : ivae001.
[26] 韩志伟 , 蔺瑞江 , 马敏杰 , 等 . 加速康复外科理念在达芬奇机器人食 管癌 McKeown 手术中应用的回顾性队列研究 [J]. 中国胸心血管外科 临床杂志 , 2023, 30(10): 1415-1421.
[27] 郭超 , 张家齐 , 李桢 , 等 . 医疗机器人在肺部小结节诊疗中的应用现 状及前景展望 [J]. 中华胸部外科电子杂志 , 2022, 9(1): 35-40.
[28] 张琥 , 曾昭宇 , 程弓 , 等 . 达芬奇手术机器人从引进到使用过程中的 科学管理 [J]. 北京生物医学工程 , 2021, 40(1): 101-104.
[29] Reddy K, Gharde P, Tayade H, et al. Advancements in robotic surgery: a comprehensive overview of current utilizations and upcoming frontiers[J]. Cureus, 2023, 15(12): e50415.
[30] Fairag M, Almahdi R H, Siddiqi A A, et al. Robotic revolution in surgery: diverse applications across specialties and future prospects review article[J]. Cureus, 2024, 16(1): e52148.
[31] Chatterjee S, Das S, Ganguly K, et al. Advancements in robotic surgery: innovations, challenges and future prospects[J]. J Robot Surg, 2024, 18(1): 28.