Advertisement
中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

不同模式下骨科手术机器人微创经椎间孔入路腰椎椎间融合术的置钉准确性与手术效率比较

Comparison of nail placement accuracy and surgical efficiency of orthopedic robot-assisted minimally invasive transforaminal lumbar interbody fusion under different modes

作者:王辉,孙小刚,田永昊,原所茂,王连雷,刘新宇

Vol. 6 No. 2 Feb. 2025 DOI: 10.12180/j.issn.2096-7721.2025.02.004 发布日期:2025-03-17
关键词:骨科手术机器人;微创经椎间孔入路腰椎椎间融合术;X 线配准;CT 配准;置钉准确性;手术效率

作者简介:

目的:比较术中行 X 线配准和 CT 配准两种模式的骨科手术机器人辅助微创经椎间孔入路腰椎椎间融合术(TLIF)的 置钉准确性与手术效率。方法:选取 2021 年 6 月—2023 年 6 月于山东大学齐鲁医院接受机器人辅助 TLIF 的 57 例患者,其 中 19 例采用匹配术前 CT 的术中 X 线配准机器人辅助置入椎弓根螺钉(X 线配准组),19 例采用术中 CT 配准机器人辅助置 入椎弓根螺钉(CT 配准组),19 例采用徒手置入椎弓根螺钉(徒手组)。比较三组螺钉的置入准确性、固定上位节段关节 突关节侵扰率、术中透视次数、出血量、辐射暴露水平、术后住院时间和临床效果,以及 X 线配准组和 CT 配准组的手术时间。 结果:三组患者的出血量、术后住院时间和腰椎滑脱节段比较,差异无统计学意义(P>0.05),三组患者术后 VAS 评分和 ODI 评分均较术前明显好转(P<0.05)。X 线配准组较 CT 配准组患者的术中辐射暴露少,且均低于徒手组(P<0.05)。X 线 配准组和 CT 配准组的临床可接受螺钉数量大于徒手组,固定上位节段关节突关节侵扰率小于徒手组,但差异无统计学意义 (P>0.05)。X 线配准组配准及规划时间低于 CT 配准组,机器人装备时间及置钉时间高于 CT 配准组(P<0.05),两组患者 总手术时间差异无统计学意义(P>0.05),但均高于徒手组(P<0.05)。结论:术中行 X 线配准和 CT 配准两种模式的机器 人辅助 TLIF 具有较高的置钉准确性和安全性,辐射量低,可作为 TLIF 的有效辅助方式。

Objective: To compare the nail placement accuracy and surgical efficiency of orthopedic robot-assisted minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) with intraoperative X-ray and CT alignment. Methods: 57 patients who underwent robotic-assisted MIS-TLIF from June 2020 to June 2023 in Qilu Hospital of Shandong University were selected. They were divided into the X-ray alignment group (n=19), the CT alignment group (n=19) and the freehand group (n=19). Patients in the above three groups underwent intraoperative X-ray alignment-assisted pedicle screw placement, intraoperative CT alignment-assisted pedicle screw placement and freehand pedicle screw placement, respectively. Screw placement accuracy, rate of superior level facet joint violations, number of intraoperative fluoroscopies, bleeding, radiation exposure level, postoperative length of hospital stay, and clinical outcomes among the three groups were compared. Meanwhile, operative time were compared between the X-ray-aligned group and CT-aligned group. Results: There was no statistically significant difference in bleeding, postoperative length of hospital stay, and lumbar spondylolisthesis segments among the three groups (P>0.05). Postoperative VAS and ODI scores of the three groups were significantly improved compared with those before surgery (P<0.05). Intraoperative radiation exposure in the X-ray alignment group was lower than that in the CT alignment group, and they were both lower than that in the freehand group (P<0.05). There was no statistically significant difference in the clinically acceptable screw placement and rate of superior level facet joint violations among the three groups of patients (P>0.05). The X-ray alignment group has lower alignment and planning time (P<0.05), and higher robot equipping and nail placement time than the CT alignment group (P<0.05), but the difference in the total operative time between the two groups was not statistically significant (P>0.05). The total operative times of the X-ray-aligned group and CT-aligned group were higher than that of the freehand group (P<0.05). Conclusion: Robot-assisted MIS-TLIF with X-ray and CT alignment intraoperatively has high nail placement accuracy and safety, low radiation exposure, which can be used as an effective adjunct to MIS-TLIF.

稿件信息

基金项目:国家自然科学基金(81874022,82172483,82102522);山东省重点研发计划(2022CXGC01050);山东省自然科学基金 (ZR202102210113);山东省泰山学者项目(tsqn202211317);中央高水平医院临床研究基金(2022-PUMCH-D-004) 

Foundation Item: National Natural Science Foundation of China (81874022, 82172483, 82102522); Key R&D Plan Project of Shandong  Province (2022CXGC01050); Natural Science Foundation of Shandong Province (ZR202102210113); Shandong Taishan Scholars Project  (tsqn202211317); Clinical Research Fund of the Central High-level Hospital (2022-PUMCH-D-004)  

引用格式:王辉,孙小刚,田永昊,等 . 不同模式下骨科手术机器人微创经椎间孔入路腰椎椎间融合术的置钉准确性与手术效率比较 [J]. 机 器人外科学杂志(中英文),2025,6(2):210-216. 

Citation: WANG H, SUN X G, TIAN Y H, et al. Comparison of nail placement accuracy and surgical efficiency of orthopedic robot-assisted  minimally invasive transforaminal lumbar interbody fusion under different modes[J]. Chinese Journal of Robotic Surgery, 2025, 6(2):  210-216. 

通讯作者(Corresponding Author):刘新宇(LIU Xinyu),Email:newyuliu@163.com

参考文献

[1] D’Souza M, Gendreau J, Feng A, et al. Robotic-assisted spine surgery: history, efficacy, cost, and future trends[J]. Robot Surg, 2019, 7(6): 9-23. 

[2] Mualem W, Onyedimma C, Ghaith A K, et al. R2 advances in roboticassisted spine surgery: comparative analysis of options, future directions, and bibliometric analysis of the literature[J]. Neurosurg Rev, 2022, 46(1): 18. 

[3] Alluri R K, Avrumova F, Sivaganesan A, et al. Overview of robotic technology in spine surgery[J]. Hss j, 2021, 17(3): 308-316. 

[4] Kapoen C, Liu Y, Bloemers F W, et al. Pedicle screw fixation of thoracolumbar fractures: conventional short segment versus short segment with intermediate screws at the fracture level-a systematic review and meta-analysis[J]. Eur Spine J, 2020, 29(10): 2491-2504. 

[5] FAN Y, DU J P, ZHANG J N, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery[J]. Med Sci Monit, 2017.DOI: 10.12659/msm.905713. 

[6] De Biase G, Gassie K, Garcia D, et al. Perioperative comparison of roboticassisted versus fluoroscopically guided minimally invasive transforaminal lumbar interbody fusion[J]. World Neurosurg, 2021.DOI: 10.1016/ j.wneu.2021.01.133. 

[7] Jutte P C, Castelein R M. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations[J]. Eur Spine J, 2002, 11(6): 594-598. 

[8] Lau D, Terman S W, Patel R, et al. Incidence of and risk factors for superior facet violation in minimally invasive versus open pedicle screw placement during transforaminal lumbar interbody fusion: a comparative analysis[J]. J Neurosurg Spine, 2013, 18(4): 356-361. 

[9] Perfetti D C, Kisinde S, Rogers-LaVanne M P, et al. Robotic spine surgery: past, present, and future[J]. Spine (Phila Pa 1976), 2022, 47(13): 909-921. 

[10] Wang T Y, Mehta V A, Sankey E W, et al. Operative time and learning curve between fluoroscopy-based instrument tracking and robot-assisted instrumentation for patients undergoing minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF)[J]. Clin Neurol Neurosurg, 2021.DOI: 10.1016/j.clineuro.2021.106698. 

[11] SU X J, LV Z D, CHEN Z, et al. Comparison of accuracy and clinical outcomes of robot-assisted versus fluoroscopy-guided pedicle screw placement in posterior cervical surgery[J]. Global Spine J, 2022, 12(4): 620-626. 

[12] Akazawa T, Torii Y, Ueno J, et al. Safety of robotic-assisted screw placement for spine surgery: experience from the initial 125 cases[J]. J Orthop Sci, 2023.DOI: 10.1016/j.jos.2023.06.003. 

[13] 刘新宇 , 原所茂 , 田永昊 , 等 . 微创经椎间孔腰椎椎体间融合术内固 定相关并发症及对策 [J]. 中华骨科杂志 , 2016, 36(22): 1426-1434.

[14] ZHANG Y, PENG Q, SUN C H, et al. Robot versus fluoroscopy-assisted vertebroplasty and kyphoplasty for osteoporotic vertebral compression fractures: a systematic review and meta-analysis[J]. World Neurosurg, 2022.DOI: 10.1016/j.wneu.2022.07.083. 

[15] CUI G Y, HAN X G, WEI Y, et al. Robot-assisted minimally invasive transforaminal lumbar interbody fusion in the treatment of lumbar spondylolisthesis[J]. Orthop Surg, 2021, 13(7): 1960-1968. 

[16] ZHANG R J, ZHOU L P, ZHANG L, et al. Safety and risk factors of TINAVI robot-assisted percutaneous pedicle screw placement in spinal surgery[J]. J Orthop Surg Res, 2022, 17(1): 379. 

[17] Joshi R S, Lau D, Ames C P. Artificial intelligence and the future of spine surgery[J]. Neurospine, 2019, 16 (4) : 637-639. 

[18] Gertzbein S D, Robbins S E. Accuracy of pedicular screw placement in vivo[J]. Spine (Phila Pa 1976), 1990, 15(1): 11-14. 

[19] FAN Y, DU J P, LIU J J, et al. Accuracy of pedicle screw placement comparing robot-assisted technology and the free-hand with fluoroscopyguided method in spine surgery: An updated meta-analysis[J]. Medicine (Baltimore), 2018, 97(22): e10970. 

[20] YAN K, ZHANG Q, TIAN W. Comparison of accuracy and safety between second-generation TiRobot-assisted and free-hand thoracolumbar pedicle screw placement[J]. BMC Surg, 2022, 22(1): 275. 

[21] LI W S, LI G Y, CHEN W T, et al. The safety and accuracy of robotassisted pedicle screw internal fixation for spine disease: a metaanalysis[J]. Bone Joint Res, 2020, 9(10): 653-666. 

[22] HAN X G, TIAN W, LIU Y J, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial[J]. J Neurosurg Spine, 2019, 30(5): 615-622. 

[23] LI C, WANG Z, LI D L, et al. Safety and accuracy of cannulated pedicle screw placement in scoliosis surgery: a comparison of robotic-navigation, O-arm-based navigation, and freehand techniques[J]. Eur Spine J, 2023, 32(9): 3094-3104. 

[24] Akazawa T, Torii Y, Ueno J, et al. Learning curves for robotic-assisted spine surgery: an analysis of the time taken for screw insertion, robot setting, registration, and fluoroscopy[J]. Eur J Orthop Surg Traumatol, 2024, 34(1): 127-134.

[25] WANG L L, LI C, WANG Z, et al. Comparison of robot-assisted versus fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: 2-year follow-up[J]. J Robot Surg, 2023, 17(2): 473-485. 

[26] ZHANG Q, HAN X G, XU Y F, et al. Robotic navigation during spine surgery[J]. Expert Rev Med Devices, 2020, 17(1): 27-32. 

[27] Kantelhardt S R, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement[J]. Eur Spine J, 2011, 20(6): 860-868. 

[28] Lonjon N, Chan-Seng E, Costalat V, et al. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis[J]. Eur Spine J, 2016, 25(3): 947-955. 

[29] Keric N, Eum D J, Afghanyar F, et al. Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis[J]. J Robot Surg, 2017, 11(1): 17-25. 

[30] Kim M C, Chung H T, Cho J L, et al. Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion[J]. J Spinal Disord Tech, 2013, 26(2): 87-92. 

[31] Fatima N, Massaad E, Hadzipasic M, et al. Safety and accuracy of robotassisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis[J]. Spine J, 2021, 21(2): 181-192. 

[32] Park J H, Lee J, Hakim N A, et al. Robotic thyroidectomy learning curve for beginning surgeons with little or no experience of endoscopic surgery[J]. Head Neck, 2015, 37(12): 1705-1711. 

[33] Lee K, Lee K M, Park M S, et al. Measurements of surgeons’ exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy[J]. Spine (Phila Pa 1976), 2012, 37(14): 1240-1244. 

[34] Riis J, Lehman R R, Perera R A, et al. A retrospective comparison of intraoperative CT and fluoroscopy evaluating radiation exposure in posterior spinal fusions for scoliosis[J]. Patient Saf Surg, 2017.DOI: 10.1186/s13037-017-0142-0. eCollection 2017. 

[35] Mulconrey D S. Fluoroscopic radiation exposure in spinal surgery: in vivo evaluation for operating room personnel[J]. Clin Spine Surg, 2016, 29(7): E331-E335. 

[36] Babu R, Park J G, Mehta A I, et al. Comparison of superior-levelfacet joint violations during open and percutaneous pedicle screw placement[J]. Neurosurgery, 2012, 71(5): 962-970. 

[37] Geiger J D, Hirschl R B. Innovation in surgical technology and techniques: Challenges and ethical issues[J].Semin Pediatr Surg, 2015, 24 (3): 115-121.

本期文章
[1] 机器人辅助乳腺癌腋窝淋巴结清扫术的初步探索(附手术视频) [2] 机器人辅助腹腔镜下盆腔脓肿清除术一例报道(附手术视频) [3] 机器人辅助胃癌根治术的优势及局限性 [4] 机器人辅助经腹宫颈环扎术的临床应用及技巧(附手术视频) [5] 机器人辅助食管癌根治术的应用现状与研究进展 [6] 机器人食管 Ivor Lewis 手术的临床应用 [7] CICARE 沟通模式联合健康教育在机器人辅助结肠癌手术患者中的效果 [8] 达芬奇手术机器人辅助胆囊癌根治术中加速康复护理与疼痛管理应用效果的评估 [9] 机器人辅助腔内手术治疗主动脉瘤患者的围手术期护理 [10] 建构主义理论教考联动模式用于机器人辅助手术护理带教对教学质量的影响 [11] 基于岗位胜任力的达芬奇机器人手术护士培训现状研究 [12] 脑卒中患者上肢机器人辅助训练文献的可视化分析 [13] 外骨骼机器人辅助康复训练对脊髓损伤患者的影响 [14] 下肢康复机器人联合针灸治疗在脑卒中偏瘫患者中的应用 [15] 下肢康复机器人联合康复锻炼治疗脑卒中患者步行障碍的效果观察 [16] 下肢外骨骼机器人在脊髓损伤患者康复过程中的应用及效果观察 [17] 康复机器人辅助训练在脑卒中后上肢功能障碍患者中的应用分析 [18] 环泊酚在机器人辅助腹腔镜下根治性前列腺癌切除术中的应用 [19] 丙泊酚靶控输注麻醉与七氟烷吸入麻醉对机器人辅助腹腔镜下根治性前列腺切除术中患者脑氧代谢及认知功能的影响 [20] 不同剂量右美托咪定联合盐酸艾司氯胺酮对机器人辅助腹腔镜下根治性前列腺切除术患者的影响 [21] 脑电双频指数指导下丙泊酚闭环靶控输注麻醉在经口腔前庭入路机器人辅助甲状腺切除术中的应用 [22] Mako 骨科手术机器人辅助人工全膝关节置换术的配合 [23] 机器人辅助骨科手术后深静脉血栓形成的影响因素及风险预警管理研究 [24] 机器人辅助椎弓根螺钉内固定术对无神经损伤胸腰椎骨折患者临床疗效的影响因素分析 [25] 疼痛管理联合积极心理干预在机器人导航辅助创伤性骨折治疗术患者中的应用效果 [26] 不同模式下骨科手术机器人微创经椎间孔入路腰椎椎间融合术的置钉准确性与手术效率比较 [27] 机器人辅助后交叉韧带重建术治疗后交叉韧带损伤的临床疗效研究 [28] 手术机器人联合 O 臂导航系统微创治疗对髋关节置换术患者出院准备度的影响 [29] 个性化冠状位对线全膝关节置换术临床疗效的 Meta 分析
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈