目的:比较术中行 X 线配准和 CT 配准两种模式的骨科手术机器人辅助微创经椎间孔入路腰椎椎间融合术(TLIF)的 置钉准确性与手术效率。方法:选取 2021 年 6 月—2023 年 6 月于山东大学齐鲁医院接受机器人辅助 TLIF 的 57 例患者,其 中 19 例采用匹配术前 CT 的术中 X 线配准机器人辅助置入椎弓根螺钉(X 线配准组),19 例采用术中 CT 配准机器人辅助置 入椎弓根螺钉(CT 配准组),19 例采用徒手置入椎弓根螺钉(徒手组)。比较三组螺钉的置入准确性、固定上位节段关节 突关节侵扰率、术中透视次数、出血量、辐射暴露水平、术后住院时间和临床效果,以及 X 线配准组和 CT 配准组的手术时间。 结果:三组患者的出血量、术后住院时间和腰椎滑脱节段比较,差异无统计学意义(P>0.05),三组患者术后 VAS 评分和 ODI 评分均较术前明显好转(P<0.05)。X 线配准组较 CT 配准组患者的术中辐射暴露少,且均低于徒手组(P<0.05)。X 线 配准组和 CT 配准组的临床可接受螺钉数量大于徒手组,固定上位节段关节突关节侵扰率小于徒手组,但差异无统计学意义 (P>0.05)。X 线配准组配准及规划时间低于 CT 配准组,机器人装备时间及置钉时间高于 CT 配准组(P<0.05),两组患者 总手术时间差异无统计学意义(P>0.05),但均高于徒手组(P<0.05)。结论:术中行 X 线配准和 CT 配准两种模式的机器 人辅助 TLIF 具有较高的置钉准确性和安全性,辐射量低,可作为 TLIF 的有效辅助方式。
Objective: To compare the nail placement accuracy and surgical efficiency of orthopedic robot-assisted minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) with intraoperative X-ray and CT alignment. Methods: 57 patients who underwent robotic-assisted MIS-TLIF from June 2020 to June 2023 in Qilu Hospital of Shandong University were selected. They were divided into the X-ray alignment group (n=19), the CT alignment group (n=19) and the freehand group (n=19). Patients in the above three groups underwent intraoperative X-ray alignment-assisted pedicle screw placement, intraoperative CT alignment-assisted pedicle screw placement and freehand pedicle screw placement, respectively. Screw placement accuracy, rate of superior level facet joint violations, number of intraoperative fluoroscopies, bleeding, radiation exposure level, postoperative length of hospital stay, and clinical outcomes among the three groups were compared. Meanwhile, operative time were compared between the X-ray-aligned group and CT-aligned group. Results: There was no statistically significant difference in bleeding, postoperative length of hospital stay, and lumbar spondylolisthesis segments among the three groups (P>0.05). Postoperative VAS and ODI scores of the three groups were significantly improved compared with those before surgery (P<0.05). Intraoperative radiation exposure in the X-ray alignment group was lower than that in the CT alignment group, and they were both lower than that in the freehand group (P<0.05). There was no statistically significant difference in the clinically acceptable screw placement and rate of superior level facet joint violations among the three groups of patients (P>0.05). The X-ray alignment group has lower alignment and planning time (P<0.05), and higher robot equipping and nail placement time than the CT alignment group (P<0.05), but the difference in the total operative time between the two groups was not statistically significant (P>0.05). The total operative times of the X-ray-aligned group and CT-aligned group were higher than that of the freehand group (P<0.05). Conclusion: Robot-assisted MIS-TLIF with X-ray and CT alignment intraoperatively has high nail placement accuracy and safety, low radiation exposure, which can be used as an effective adjunct to MIS-TLIF.
基金项目:国家自然科学基金(81874022,82172483,82102522);山东省重点研发计划(2022CXGC01050);山东省自然科学基金 (ZR202102210113);山东省泰山学者项目(tsqn202211317);中央高水平医院临床研究基金(2022-PUMCH-D-004)
Foundation Item: National Natural Science Foundation of China (81874022, 82172483, 82102522); Key R&D Plan Project of Shandong Province (2022CXGC01050); Natural Science Foundation of Shandong Province (ZR202102210113); Shandong Taishan Scholars Project (tsqn202211317); Clinical Research Fund of the Central High-level Hospital (2022-PUMCH-D-004)
引用格式:王辉,孙小刚,田永昊,等 . 不同模式下骨科手术机器人微创经椎间孔入路腰椎椎间融合术的置钉准确性与手术效率比较 [J]. 机 器人外科学杂志(中英文),2025,6(2):210-216.
Citation: WANG H, SUN X G, TIAN Y H, et al. Comparison of nail placement accuracy and surgical efficiency of orthopedic robot-assisted minimally invasive transforaminal lumbar interbody fusion under different modes[J]. Chinese Journal of Robotic Surgery, 2025, 6(2): 210-216.
通讯作者(Corresponding Author):刘新宇(LIU Xinyu),Email:newyuliu@163.com
[1] D’Souza M, Gendreau J, Feng A, et al. Robotic-assisted spine surgery: history, efficacy, cost, and future trends[J]. Robot Surg, 2019, 7(6): 9-23.
[2] Mualem W, Onyedimma C, Ghaith A K, et al. R2 advances in roboticassisted spine surgery: comparative analysis of options, future directions, and bibliometric analysis of the literature[J]. Neurosurg Rev, 2022, 46(1): 18.
[3] Alluri R K, Avrumova F, Sivaganesan A, et al. Overview of robotic technology in spine surgery[J]. Hss j, 2021, 17(3): 308-316.
[4] Kapoen C, Liu Y, Bloemers F W, et al. Pedicle screw fixation of thoracolumbar fractures: conventional short segment versus short segment with intermediate screws at the fracture level-a systematic review and meta-analysis[J]. Eur Spine J, 2020, 29(10): 2491-2504.
[5] FAN Y, DU J P, ZHANG J N, et al. Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery[J]. Med Sci Monit, 2017.DOI: 10.12659/msm.905713.
[6] De Biase G, Gassie K, Garcia D, et al. Perioperative comparison of roboticassisted versus fluoroscopically guided minimally invasive transforaminal lumbar interbody fusion[J]. World Neurosurg, 2021.DOI: 10.1016/ j.wneu.2021.01.133.
[7] Jutte P C, Castelein R M. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations[J]. Eur Spine J, 2002, 11(6): 594-598.
[8] Lau D, Terman S W, Patel R, et al. Incidence of and risk factors for superior facet violation in minimally invasive versus open pedicle screw placement during transforaminal lumbar interbody fusion: a comparative analysis[J]. J Neurosurg Spine, 2013, 18(4): 356-361.
[9] Perfetti D C, Kisinde S, Rogers-LaVanne M P, et al. Robotic spine surgery: past, present, and future[J]. Spine (Phila Pa 1976), 2022, 47(13): 909-921.
[10] Wang T Y, Mehta V A, Sankey E W, et al. Operative time and learning curve between fluoroscopy-based instrument tracking and robot-assisted instrumentation for patients undergoing minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF)[J]. Clin Neurol Neurosurg, 2021.DOI: 10.1016/j.clineuro.2021.106698.
[11] SU X J, LV Z D, CHEN Z, et al. Comparison of accuracy and clinical outcomes of robot-assisted versus fluoroscopy-guided pedicle screw placement in posterior cervical surgery[J]. Global Spine J, 2022, 12(4): 620-626.
[12] Akazawa T, Torii Y, Ueno J, et al. Safety of robotic-assisted screw placement for spine surgery: experience from the initial 125 cases[J]. J Orthop Sci, 2023.DOI: 10.1016/j.jos.2023.06.003.
[13] 刘新宇 , 原所茂 , 田永昊 , 等 . 微创经椎间孔腰椎椎体间融合术内固 定相关并发症及对策 [J]. 中华骨科杂志 , 2016, 36(22): 1426-1434.
[14] ZHANG Y, PENG Q, SUN C H, et al. Robot versus fluoroscopy-assisted vertebroplasty and kyphoplasty for osteoporotic vertebral compression fractures: a systematic review and meta-analysis[J]. World Neurosurg, 2022.DOI: 10.1016/j.wneu.2022.07.083.
[15] CUI G Y, HAN X G, WEI Y, et al. Robot-assisted minimally invasive transforaminal lumbar interbody fusion in the treatment of lumbar spondylolisthesis[J]. Orthop Surg, 2021, 13(7): 1960-1968.
[16] ZHANG R J, ZHOU L P, ZHANG L, et al. Safety and risk factors of TINAVI robot-assisted percutaneous pedicle screw placement in spinal surgery[J]. J Orthop Surg Res, 2022, 17(1): 379.
[17] Joshi R S, Lau D, Ames C P. Artificial intelligence and the future of spine surgery[J]. Neurospine, 2019, 16 (4) : 637-639.
[18] Gertzbein S D, Robbins S E. Accuracy of pedicular screw placement in vivo[J]. Spine (Phila Pa 1976), 1990, 15(1): 11-14.
[19] FAN Y, DU J P, LIU J J, et al. Accuracy of pedicle screw placement comparing robot-assisted technology and the free-hand with fluoroscopyguided method in spine surgery: An updated meta-analysis[J]. Medicine (Baltimore), 2018, 97(22): e10970.
[20] YAN K, ZHANG Q, TIAN W. Comparison of accuracy and safety between second-generation TiRobot-assisted and free-hand thoracolumbar pedicle screw placement[J]. BMC Surg, 2022, 22(1): 275.
[21] LI W S, LI G Y, CHEN W T, et al. The safety and accuracy of robotassisted pedicle screw internal fixation for spine disease: a metaanalysis[J]. Bone Joint Res, 2020, 9(10): 653-666.
[22] HAN X G, TIAN W, LIU Y J, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial[J]. J Neurosurg Spine, 2019, 30(5): 615-622.
[23] LI C, WANG Z, LI D L, et al. Safety and accuracy of cannulated pedicle screw placement in scoliosis surgery: a comparison of robotic-navigation, O-arm-based navigation, and freehand techniques[J]. Eur Spine J, 2023, 32(9): 3094-3104.
[24] Akazawa T, Torii Y, Ueno J, et al. Learning curves for robotic-assisted spine surgery: an analysis of the time taken for screw insertion, robot setting, registration, and fluoroscopy[J]. Eur J Orthop Surg Traumatol, 2024, 34(1): 127-134.
[25] WANG L L, LI C, WANG Z, et al. Comparison of robot-assisted versus fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion for degenerative lumbar spinal diseases: 2-year follow-up[J]. J Robot Surg, 2023, 17(2): 473-485.
[26] ZHANG Q, HAN X G, XU Y F, et al. Robotic navigation during spine surgery[J]. Expert Rev Med Devices, 2020, 17(1): 27-32.
[27] Kantelhardt S R, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement[J]. Eur Spine J, 2011, 20(6): 860-868.
[28] Lonjon N, Chan-Seng E, Costalat V, et al. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis[J]. Eur Spine J, 2016, 25(3): 947-955.
[29] Keric N, Eum D J, Afghanyar F, et al. Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis[J]. J Robot Surg, 2017, 11(1): 17-25.
[30] Kim M C, Chung H T, Cho J L, et al. Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion[J]. J Spinal Disord Tech, 2013, 26(2): 87-92.
[31] Fatima N, Massaad E, Hadzipasic M, et al. Safety and accuracy of robotassisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis[J]. Spine J, 2021, 21(2): 181-192.
[32] Park J H, Lee J, Hakim N A, et al. Robotic thyroidectomy learning curve for beginning surgeons with little or no experience of endoscopic surgery[J]. Head Neck, 2015, 37(12): 1705-1711.
[33] Lee K, Lee K M, Park M S, et al. Measurements of surgeons’ exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy[J]. Spine (Phila Pa 1976), 2012, 37(14): 1240-1244.
[34] Riis J, Lehman R R, Perera R A, et al. A retrospective comparison of intraoperative CT and fluoroscopy evaluating radiation exposure in posterior spinal fusions for scoliosis[J]. Patient Saf Surg, 2017.DOI: 10.1186/s13037-017-0142-0. eCollection 2017.
[35] Mulconrey D S. Fluoroscopic radiation exposure in spinal surgery: in vivo evaluation for operating room personnel[J]. Clin Spine Surg, 2016, 29(7): E331-E335.
[36] Babu R, Park J G, Mehta A I, et al. Comparison of superior-levelfacet joint violations during open and percutaneous pedicle screw placement[J]. Neurosurgery, 2012, 71(5): 962-970.
[37] Geiger J D, Hirschl R B. Innovation in surgical technology and techniques: Challenges and ethical issues[J].Semin Pediatr Surg, 2015, 24 (3): 115-121.