Advertisement
中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

机器人食管 Ivor Lewis 手术的临床应用

Clinical application of robot-assisted Ivor Lewis esophagectomy

作者:严妍,康晓征,李成强,王允,李志刚,韩泳涛,石立强,冯希佳,李印,李鹤成

Vol. 6 No. 2 Feb. 2025 DOI: 10.12180/j.issn.2096-7721.2025.02.024 发布日期:2025-03-21
关键词:机器人辅助手术;Ivor Lewis 食管切除术;食管癌

作者简介:

食管癌属于上消化道恶性肿瘤,发病率高,预后差。根治性手术是其主要治疗手段之一,两切口食管癌胸内吻合术(Ivor  Lewis 术)是常用术式。腔镜辅助微创食管切除术(VAMIE)已得到较为广泛的应用,但其存在二维视野、长直刚性器械以 及主刀需要依赖助手控制镜头等局限性,不利于Ivor Lewis术的复杂操作。达芬奇机器人手术系统作为新一代的微创手术系统, 具有较高的灵活性、精确性及稳定性,机器人辅助 Ivor Lewis 术(RAILE)克服了 VAMIE 的局限性,学习曲线明显缩短。本 文就 RAILE 的手术适应证、围术期准备、手术操作步骤及应遵守的标准等进行综述,以供胸外科同道参考。

Esophageal cancer (EC) is a type of digestive system cancer with high incidence and poor prognosis. Surgical resection is the preferred option for resectable EC, and Ivor Lewis esophagectomy is the procedure commonly used. Video-assisted minimally invasive esophagectomy (VAMIE) has been widely used in recent years, while it has some limitations, such as two-dimensional field of view, long and rigid instruments, and the controlling of laparoscope must be assisted by an assistant. These limitations bring difficulty for Ivor Lewis esophagectomy. The Da Vinci robotic surgical system, characterized as high flexibility, accuracy and stability, overcomes the limitations of VAMIE, and shortens the learning curve. The surgical indications, perioperative preparation, surgical procedures and standards was reviewed in this paper, hoping to provide references for thoracic surgeons.

稿件信息

基金项目:国家自然科学基金(82372855,82072557);上海市卫生健康委员会新兴交叉领域研究专项(2022JC023) 

Foundation Item: National Natural Science Foundation of China(82372855, 82072557); Novel Interdisciplinary Research Project of  Shanghai Municipal Health Commission (2022JC023) 

引用格式:严妍,康晓征,李成强,等 . 机器人食管 Ivor Lewis 手术的临床应用 [J]. 机器人外科学杂志(中英文),2025,6(2):319-331. 

Citation: YAN Y, KANG X Z, LI C Q, et al. Clinical application of robot-assisted Ivor Lewis esophagectomy[J]. Chinese Journal of Robotic  Surgery, 2025, 6(2): 319-331. 

通讯作者(Corresponding Author):李鹤成(LI Hecheng),Email:lihecheng2000@hotmail.com;李印(LI Yin),Email:liyin_thorax@  163.com

参考文献

[1] Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. 

[2] ZHENG R S, ZHANG S W, ZENG H M, et al. Cancer incidence and mortality in China, 2016[J]. Journal of the National Cancer Center, 2022, 2(1): 1-9. 

[3] Hsu P K, Huang C S, Wu Y C, et al. Open versus thoracoscopic esophagectomy in patients with esophageal squamous cell carcinoma[J]. World J Surg, 2014, 38(2): 402-409.

[4] Biere S S, van Berge Henegouwen M I, Maas K W, et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial[J]. Lancet, 2012, 379(9829): 1887-1892. 

[5] van Workum F, Slaman A E, van Berge Henegouwen M I, et al. Propensity score-matched analysis comparing minimally invasive ivor lewis versus minimally invasive Mckeown esophagectomy[J]. Ann Surg, 2020, 271(1): 128-133. 

[6] Junttila A, Helminen O, Helmio M, et al. Five-year survival after McKeown compared to Ivor-Lewis esophagectomy for esophageal cancer: a population-based nationwide study in Finland[J]. Ann Surg, 2023, (6): 964-970. 

[7] Bizekis C, Kent M S, Luketich J D, et al. Initial experience with minimally invasive Ivor Lewis esophagectomy[J]. Ann Thorac Surg, 2006, 82(2): 402- 6; discussion 6-7. 

[8] van Workum F, Stenstra M, Berkelmans G H K, et al. Learning curve and associated morbidity of minimally invasive esophagectomy: a retrospective multicenter study[J]. Ann Surg, 2019, 269(1): 88-94. 

[9] Claassen L, Hannink G, Luyer M D P, et al. Learning curves of Ivor Lewis totally minimally invasive esophagectomy by hospital and surgeon characteristics: a retrospective multinational cohort study[J]. Ann Surg, 2022, 275(5): 911-918. 

[10] Giulianotti P C, Coratti A, Angelini M, et al. Robotics in general surgery: personal experience in a large community hospital[J]. Arch Surg, 2003, 138(7): 777-784. 

[11] HAN Y, ZHANG Y J, ZHANG W T, et al. Learning curve for robot-assisted Ivor Lewis esophagectomy[J]. Dis Esophagus, 2022, 35(2): doab026. 

[12] JIN R S, XIANG J, HAN D P, et al. Robot-assisted Ivor-Lewis esophagectomy with intrathoracic robot-sewn anastomosis[J]. Journal of thoracic disease, 2017, 9(11): E990-E993. 

[13] ZHANG Y J, XIANG J, HAN Y, et al. Initial experience of robot-assisted Ivor-Lewis esophagectomy: 61 consecutive cases from a single Chinese institution[J]. Dis Esophagus, 2018. DOI: 10.1093/dote/doy048. 

[14] ZHANG Y J, HAN Y, GAN Q Y, et al. Early outcomes of robot-assisted versus thoracoscopic-assisted Ivor Lewis esophagectomy for esophageal cancer: a propensity score-matched study[J]. Annals of Surgical Oncology, 2019, 26(5): 1284-1291. 

[15] de’Angelis N, Khan J, Marchegiani F, et al. Robotic surgery in emergency setting: 2021 WSES position paper[J]. World J Emerg Surg, 2022, 17(1): 4. 

[16] Potscher A, Bittermann C, Langle F. Robot-assisted esophageal surgery using the da Vinci((R)) Xi system: operative technique and initial experiences[J]. J Robot Surg, 2019, 13(3): 469-474. 

[17] Leal Ghezzi T, Campos Corleta O. 30 years of robotic surgery[J]. World J Surg, 2016, 40(10): 2550-2557. 

[18] Horgan S, Berger R A, Elli E F, et al. Robotic-assisted minimally invasive transhiatal esophagectomy[J]. Am Surg, 2003, 69(7): 624-626. 

[19] Bae S U, Baek S J, Hur H, et al. Intraoperative near infrared fluorescence imaging in robotic low anterior resection: three case reports[J]. Yonsei Med J, 2013, 54(4): 1066-1069. 

[20] Gallagher A G, McClure N, McGuigan J, et al. An ergonomic analysis of the fulcrum effect in the acquisition of endoscopic skills[J]. Endoscopy, 1998, 30(7): 617-620. 

[21] Lanfranco A R, Castellanos A E, Desai J P, et al. Robotic surgery: a current perspective[J]. Ann Surg, 2004, 239(1): 14-21. 

[22] Barba P, Stramiello J, Funk E K, et al. Remote telesurgery in humans: a systematic review[J]. Surg Endosc, 2022, 36(5): 2771-2777. 

[23] Armijo P R, Huang C K, High R, et al. Ergonomics of minimally invasive surgery: an analysis of muscle effort and fatigue in the operating room between laparoscopic and robotic surgery[J]. Surg Endosc, 2019, 33(7): 2323-2331. 

[24] Patel E, Saikali S, Mascarenhas A, et al. Muscle fatigue and physical discomfort reported by surgeons performing robotic-assisted surgery: a multinational survey[J]. J Robot Surg, 2023, 17(5): 2009-2018. 

[25] Wong S W, Crowe P. Visualisation ergonomics and robotic surgery[J]. J Robot Surg, 2023, 17(5): 1873-1878. 

[26] Peters B S, Armijo P R, Krause C, et al. Review of emerging surgical robotic technology[J]. Surg Endosc, 2018, 32(4): 1636-1655. 

[27] Grimminger P P, van der Horst S, Ruurda J P, et al. Surgical robotics for esophageal cancer[J]. Ann N Y Acad Sci, 2018, 1434(1): 21-26. 

[28] Kanamori J, Watanabe M, Maruyama S, et al. Current status of robotassisted minimally invasive esophagectomy: what is the real benefit?[J]. Surg Today, 2022, 52(9): 1246-1253. 

[29] Hosoda K, Niihara M, Harada H, et al. Robot-assisted minimally invasive esophagectomy for esophageal cancer: meticulous surgery minimizing postoperative complications[J]. Ann Gastroenterol Surg, 2020, 4(6): 608-617. 

[30] Kernstine K H, DeArmond D T, Karimi M, et al. The robotic, 2-stage, 3-field esophagolymphadenectomy[J]. J Thorac Cardiovasc Surg, 2004, 127(6): 1847-1849. 

[31] van der Sluis P C, van der Horst S, May A M, et al. Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer: a randomized controlled trial[J]. Ann Surg, 2019, 269(4): 621-630. 

[32] Melvin W S, Needleman B J, Krause K R, et al. Computer-enhanced robotic telesurgery. Initial experience in foregut surgery[J]. Surg Endosc, 2002, 16(12): 1790-1792. 

[33] de la Fuente S G, Weber J, Hoffe S E, et al. Initial experience from a large referral center with robotic-assisted Ivor Lewis esophagogastrectomy for oncologic purposes[J]. Surg Endosc, 2013, 27(9): 3339-3347. 

[34] Kingma B F, Grimminger P P, van der Sluis P C, et al. Worldwide techniques and outcomes in robot-assisted minimally invasive esophagectomy (RAMIE): results from the multicenter international registry[J]. Ann Surg, 2022, 276(5): e386-e392. 

[35] Mehdorn A S, Moller T, Franke F, et al. Long-term, health-related quality of life after open and robot-assisted Ivor-Lewis procedures-a propensity score-matched study[J]. J Clin Med, 2020, 9(11): 3513. 

[36] Merboth F, Nebelung H, Wotschel N, et al. Robotic esophagectomy compared with open esophagectomy reduces sarcopenia within the first postoperative year: a propensity score-matched analysis[J]. J Thorac Oncol, 2023, 18(2): 232-244. 

[37] ZHANG Y J, DONG D, CAO Y Q, et al. Robotic versus conventional minimally invasive esophagectomy for esophageal cancer: a metaanalysis[J]. Ann Surg, 2023, 278(1): 39-50. 

[38] de Groot E M, van der Horst S, Kingma B F, et al. Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open esophagectomy: long-term follow-up of a randomized clinical trial[J]. Dis Esophagus, 2020, 33(Supplement_2): doaa079. 

[39] Savarino E, Bhatia S, Roman S, et al. Achalasia[J]. Nat Rev Dis Primers, 2022, 8(1): 28. 

[40] 徐杨 , 申翼 . 达芬奇机器人在食管外科中的应用 [J]. 医学研究生学报 , 2021, 34(1): 1-7. 

[41] Shimi S, Nathanson L K, Cuschieri A. Laparoscopic cardiomyotomy for achalasia[J]. J R Coll Surg Edinb, 1991, 36(3): 152-154. 

[42] Melvin W S, Needleman B J, Krause K R, et al. Computer-assisted robotic heller myotomy: initial case report[J]. J Laparoendosc Adv Surg Tech A, 2001, 11(4): 251-253. 

[43] Milone M, Manigrasso M, Vertaldi S, et al. Robotic versus laparoscopic approach to treat symptomatic achalasia: systematic review with metaanalysis[J]. Dis Esophagus, 2019, 32(10): 1-8. 

[44] Damani T, Ballantyne G. Robotic foregut surgery[J]. Surg Clin North Am, 2020, 100(2): 249-264. 

[45] Katz P O, Dunbar K B, Schnoll-Sussman F H, et al. ACG Clinical guideline for the diagnosis and management of gastroesophageal reflux disease[J]. Am J Gastroenterol, 2022, 117(1): 27-56. 

[46] Frazzoni M, Conigliaro R, Colli G, et al. Conventional versus robot-assisted laparoscopic Nissen fundoplication: a comparison of postoperative acid reflux parameters[J]. Surg Endosc, 2012, 26(6): 1675-1681. 

[47] GH A L, Hu J R, Yao P, et al. Surgical Treatment for esophageal leiomyoma: 13 years of experience in a high-volume tertiary hospital[J]. Front Oncol, 2022. DOI: 10.3389/fonc.2022.876277. 

[48] Asaf B B, Bishnoi S, Puri H V, et al. Robotic enucleation of oesophageal leiomyoma technique and surgical outcomes[J]. J Minim Access Surg, 2022, 18(1): 84-89. 

[49] Inderhees S, Tank J, Stein H J, et al. Leiomyoma of the esophagus : A further indication for robotic surgery?[J]. Chirurg, 2019, 90(2): 125-130. 

[50] Ajani J A, D’Amico T A, Bentrem D J, et al. Esophageal and Esophagogastric Junction Cancers, Version 2.2023, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2023 21(4): 393-422. 

[51] 中国临床肿瘤学会指南工作委员会 . 中国临床肿瘤学会 (CSCO) 食管 癌诊疗指南 2023[M]. 北京 : 人民卫生出版社 , 2023. 

[52] Esophageal Surgery[M]. Wolters Kluwer, 2023. 

[53] Brown A M, Pucci M J, Berger A C, et al. A standardized comparison of peri-operative complications after minimally invasive esophagectomy: Ivor Lewis versus McKeown[J]. Surg Endosc, 2018, 32(1): 204-211. 

[54] Jezerskyte E, Saadeh L M, Hagens E R C, et al. Long-term health-related quality of life after McKeown and Ivor Lewis esophagectomy for esophageal carcinoma[J]. Dis Esophagus, 2020. DOI: 10.1093/dote/doaa022. 

[55] YANG Y S, SHANG Q X, YUAN Y, et al. Comparison of long-term quality of life in patients with esophageal cancer after Ivor-Lewis, Mckeown, or Sweet esophagectomy[J]. J Gastrointest Surg, 2019, 23(2): 225-231. 

[56] Rice D C. Robot-assisted Ivor Lewis Esophagectomy[M]. Springer International Publishing, 2021: 19-42. 

[57] Steyerberg E W, Neville B A, Koppert L B, et al. Surgical mortality in patients with esophageal cancer: development and validation of a simple risk score[J]. J Clin Oncol, 2006, 24(26): 4277-4284. 

[58] Hashimi S, Smith M. Medical evaluation of patients preparing for an esophagectomy[J]. Surg Clin North Am, 2012, 92(5): 1127-1133. 

[59] SONG C H, CAO J J, ZHANG F, et al. Nutritional risk assessment by scored patient-generated subjective global assessment associated with demographic characteristics in 23, 904 common malignant tumors patients[J]. Nutr Cancer, 2019, 71(1): 50-60. 

[60] 中国抗癌协会肿瘤营养专业委员会 , 中华医学会肠外肠内营养学分 会 , 中国医师协会放射肿瘤治疗医师分会营养与支持治疗学组 . 食 管癌患者营养治疗指南 [J]. 中国肿瘤临床 , 2020, 47(1): 1-10. 

[61] Weimann A, Braga M, Carli F, et al. ESPEN practical guideline: Clinical nutrition in surgery[J]. Clin Nutr, 2021, 40(7): 4745-4761. 

[62] Muscaritoli M, Arends J, Bachmann P, et al. ESPEN practical guideline: Clinical Nutrition in cancer[J]. Clin Nutr, 2021, 40(5): 2898-2913. 

[63] Reddy R M, Weir W B, Barnett S, et al. Increased variance in oral and gastric microbiome correlates with esophagectomy anastomotic leak[J]. Ann Thorac Surg, 2018, 105(3): 865-870. 

[64] Yuda M, Yamashita K, Okamura A, et al. Influence of preoperative oropharyngeal microflora on the occurrence of postoperative pneumonia and survival in patients undergoing esophagectomy for esophageal cancer[J]. Ann Surg, 2020, 272(6): 1035-1043. 

[65] Kelly R J, Ajani J A, Kuzdzal J, et al. Adjuvant Nivolumab in resected esophageal or gastroesophageal junction cancer[J]. N Engl J Med, 2021, 384(13): 1191-1203. 

[66] GU Y, CHEN X, WANG D, et al. A study of neoadjuvant sintilimab combined with triplet chemotherapy of lipo-paclitaxel, cisplatin, and S-1 for resectable esophageal squamous cell carcinoma (ESCC)[J]. Annals of Oncology, 2020, 31(suppl_6): S1287-S1318. 

[67] LI C Q, ZHAO S G, ZHENG Y Y, et al. Preoperative pembrolizumab combined with chemoradiotherapy for oesophageal squamous cell carcinoma (PALACE-1)[J]. Eur J Cancer, 2021, 144(2021): 232-241. 

[68] LI Z, LIU J, ZHANG M, et al. A phase II study of neoadjuvant immunotherapy combined with chemotherapy (camrelizumab plus albumin paclitaxel and carboplatin) in resectable thoracic esophageal squamous cell cancer (NICE study): interim results[J]. Journal of Clinical Oncology, 2021, 39(15_suppl): 4060. 

[69] van den Ende T, de Clercq N C, van Berge Henegouwen M I, et al. Neoadjuvant chemoradiotherapy combined with atezolizumab for resectable esophageal adenocarcinoma: a single-arm phase II Feasibility trial (PERFECT)[J]. Clin Cancer Res, 2021, 27(12): 3351-3359. 

[70] YAN X L, DUAN H T, NI Y F, et al. Tislelizumab combined with chemotherapy as neoadjuvant therapy for surgically resectable esophageal cancer: aprospective, single-arm, phase II study (TD-NICE)[J]. Int J Surg, 2022. DOI: 10.1016/j.ijsu.2022.106680. 

[71] Chouliaras K, Hochwald S, Kukar M. Robotic-assisted Ivor Lewis esophagectomy, a review of the technique[J]. Updates Surg, 2021, 73(3): 831-838. 

[72] Egberts J H, Biebl M, Perez D R, et al. Robot-assisted oesophagectomy: recommendations towards a standardised Ivor Lewis procedure[J]. J Gastrointest Surg, 2019, 23(7): 1485-1492. 

[73] Berkelmans G H K, Fransen L F C, Dolmans-Zwartjes A C P, et al. Direct oral feeding following minimally invasive esophagectomy (NUTRIENT II trial): an international, multicenter, open-label randomized controlled trial[J]. Ann Surg, 2020, 271(1): 41-47. 

[74] Han-Geurts I J, Hop W C, Verhoef C, et al. Randomized clinical trial comparing feeding jejunostomy with nasoduodenal tube placement in patients undergoing oesophagectomy[J]. Br J Surg, 2007, 94(1): 31-35. 

[75] LIAO M F, XIA Z H, HUANG P L, et al. Early enteral feeding on esophageal cancer patients after esophageal resection and reconstruction[J]. Ann Palliat Med, 2020, 9(3): 816-823. 

[76] SUN H B, LI Y, LIU X B, et al. Early oral feeding following McKeown minimally invasive esophagectomy: an open-label, randomized, controlled, noninferiority trial[J]. Ann Surg, 2018, 267(3): 435-442. 

[77] TAO Z, ZHANG Y, ZHU S J, et al. A prospective randomized trial comparing jejunostomy and nasogastric feeding in minimally invasive McKeown esophagectomy[J]. J Gastrointest Surg, 2020, 24(10): 2187- 2196. 

[78] Fabbi M, van Berge Henegouwen M I, Fumagalli Romario U, et al. Endto-side circular stapled versus side-to-side linear stapled intrathoracic esophagogastric anastomosis following minimally invasive Ivor-Lewis esophagectomy: comparison of short-term outcomes[J]. Langenbecks Arch Surg, 2022, 407(7): 2681-2692. 

[79] Guerra F, Tribuzi A, Giuliani G, et al. Fully robotic side-to-side linearstapled anastomosis during robotic Ivor Lewis esophagectomy[J]. World J Surg, 2023, 47(9): 2207-2212. 

[80] Maas K W, Biere S S, Scheepers J J, et al. Minimally invasive intrathoracic anastomosis after Ivor Lewis esophagectomy for cancer: a review of transoral or transthoracic use of staplers[J]. Surg Endosc, 2012, 26(7): 1795-1802. 

[81] Plat V D, Stam W T, Schoonmade L J, et al. Implementation of robotassisted Ivor Lewis procedure: Robotic hand-sewn, linear or circular technique?[J]. Am J Surg, 2020, 220(1): 62-68. 

[82] ZHANG H L, WANG Z H, ZHENG Y, et al. Robotic side-to-side and endto-side stapled esophagogastric anastomosis of Ivor Lewis esophagectomy for cancer[J]. World J Surg, 2019, 43(12): 3074-3082. 

[83] 中国医师协会食管外科专家委员会 . 微创食管癌切除术 (minimally invasive esophagectomy, MIE) 专家共识 [J]. 中华胸心血管外科杂志 , 2013, 29(7): 385-387. 

[84] Japan Esophageal Sociaty. Japanese Classification of Esophageal Cancer, 11th Edition: part I[J]. Esophagus, 2017, 14(1): 1-36. 

[85] Rice T W, Ishwaran H, Ferguson M K, et al. Cancer of the esophagus and esophagogastric junction: an eighth edition staging primer[J]. J Thorac Oncol, 2017, 12(1): 36-42. 

[86] Low D E, Kuppusamy M K, Alderson D, et al. Benchmarking complications associated with esophagectomy[J]. Ann Surg, 2019, 269(2): 291-298. 

[87] Grimminger P P, Staubitz J I, Perez D, et al. Multicenter experience in robot-assisted minimally invasive esophagectomy-a comparison of hybrid and totally robot-assisted techniques[J]. J Gastrointest Surg, 2021, 25(10): 2463-2469. 

[88] Berlth F, Mann C, Uzun E, et al. Technical details of the abdominal part during full robotic-assisted minimally invasive esophagectomy[J]. Dis Esophagus, 2020, 33(Supplement_2): doaa084. 

[89] Egberts J H, Stein H, Aselmann H, et al. Fully robotic da Vinci IvorLewis esophagectomy in four-arm technique-problems and solutions[J]. Dis Esophagus, 2017, 30(12): 1-9. 

[90] Cerfolio R J, Wei B, Hawn M T, et al. Robotic Esophagectomy for cancer: early results and lessons learned[J]. Semin Thorac Cardiovasc Surg, 2016, 28(1): 160-169. 

[91] Egberts J H, Welsch T, Merboth F, et al. Robotic-assisted minimally invasive Ivor Lewis esophagectomy within the prospective multicenter German da Vinci Xi registry trial[J]. Langenbecks Arch Surg, 2022, 407(4): 1-11. 

[92] Kingma B F, Grimminger P P, van der Sluis P C, et al. Worldwide techniques and outcomes in robot-assisted minimally invasive esophagectomy (RAMIE): results from the multicenter international registry[J]. Ann Surg, 2022, 276(5): e386-e392. 

[93] Meredith K, Blinn P, Maramara T, et al. Comparative outcomes of minimally invasive and robotic-assisted esophagectomy[J]. Surg Endosc, 2020, 34(2): 814-820. 

[94] LIU Q X, MIN J X, DENG X F, et al. Is hand sewing comparable with stapling for anastomotic leakage after esophagectomy? A meta-analysis[J]. World J Gastroenterol, 2014, 20(45): 17218-17226. 

[95] Kamarajah S K, Bundred J R, Singh P, et al. Anastomotic techniques for oesophagectomy for malignancy: systematic review and network metaanalysis[J]. BJS Open, 2020, 4(4): 563-576. 

[96] HUANG Q Y, ZHONG J D, YANG T Z, et al. Impacts of anastomotic complications on the health-related quality of life after esophagectomy[J]. J Surg Oncol, 2015, 111(4): 365-370. 

[97] Scarpa M, Valente S, Alfieri R, et al. Systematic review of health-related quality of life after esophagectomy for esophageal cancer[J]. World J Gastroenterol, 2011, 17(42): 4660-4674. 

[98] Tagkalos E, van der Sluis P C, Uzun E, et al. The circular stapled esophagogastric anastomosis in esophagectomy: no differences in anastomotic insufficiency and stricture rates between the 25 mm and 28 mm circular stapler[J]. J Gastrointest Surg, 2021, 25(9): 2242-2249. 

[99] XU Z J, ZHUO Z G, SONG T N, et al. Pretreatment-assisted robot intrathoracic layered anastomosis: our exploration in Ivor-Lewis esophagectomy[J]. Journal of thoracic disease, 2021, 13(7): 4349-4359. 

[100] WANG W P, GAO Q, WANG K N, et al. A prospective randomized controlled trial of semi-mechanical versus hand-sewn or circular stapled esophagogastrostomy for prevention of anastomotic stricture[J]. World J Surg, 2013, 37(5): 1043-1050. 

[101] Sami S S, Haboubi H N, Ang Y, et al. UK guidelines on oesophageal dilatation in clinical practice[J]. Gut, 2018, 67(6): 1000-1023. 

[102] LU Q, YAN H L, WANG Y L, et al. The role of endoscopic dilation and stents in refractory benign esophageal strictures: a retrospective analysis[J]. BMC Gastroenterol, 2019, 19(1): 95. 

[103] Agrawal A, Chaddha U, Kaul V, et al. Multidisciplinary management of chylothorax[J]. Chest, 2022, 162(6): 1402-1412. 

[104] Mboumi I W, Reddy S, Lidor A O. Complications after esophagectomy[J]. Surg Clin North Am, 2019, 99(3): 501-510. 

[105] Ekeke C N, Kuiper G M, Luketich J D, et al. Comparison of roboticassisted minimally invasive esophagectomy versus minimally invasive esophagectomy: A propensity-matched study from a single high-volume institution[J]. J Thorac Cardiovasc Surg, 2023, 166(2): 374-382. 

[106] DU Z S, LI X Y, LUO H S, et al. Preoperative Administration of Olive Oil Reduces Chylothorax After Minimally Invasive Esophagectomy[J]. Ann Thorac Surg, 2019, 107(5): 1540-1543. 

[107] GUO W, ZHAO Y P, JIANG Y G, et al. Prevention of postoperative chylothorax with thoracic duct ligation during video-assisted thoracoscopic esophagectomy for cancer[J]. Surg Endosc, 2012, 26(5): 1332-1336. 

[108] Crucitti P, Mangiameli G, Petitti T, et al. Does prophylactic ligation of the thoracic duct reduce chylothorax rates in patients undergoing oesophagectomy? A systematic review and meta-analysis[J]. Eur J Cardiothorac Surg, 2016, 50(6): 1019-1024. 

[109] LEI Y Y, FENG Y F, ZENG B, et al. Effect of prophylactic thoracic duct ligation in reducing the incidence of postoperative chylothorax during esophagectomy: a systematic review and meta-analysis[J]. Thorac Cardiovasc Surg, 2018, 66(5): 370-375. 

[110] Varshney V K, Suman S, Garg P K, et al. Management options for postesophagectomy chylothorax[J]. Surg Today, 2021, 51(5): 678-685. 

[111] Booka E, Takeuchi H, Nishi T, et al. The impact of postoperative complications on survivals after esophagectomy for esophageal cancer[J]. Medicine (Baltimore), 2015, 94(33): e1369. 

[112] Tsunoda S, Obama K, Hisamori S, et al. Lower incidence of postoperative pulmonary complications following robot-assisted minimally invasive esophagectomy for esophageal cancer: propensity score-matched comparison to conventional minimally invasive esophagectomy[J]. Ann Surg Oncol, 2021, 28(2): 639-647. 

[113] ZHENG C, LI X K, ZHANG C, et al. Comparison of short-term clinical outcomes between robot-assisted minimally invasive esophagectomy and video-assisted minimally invasive esophagectomy: a systematic review and meta-analysis[J]. J Thorac Dis, 2021, 13(2): 708-719. 

[114] Shiozaki A, Fujiwara H, Okamura H, et al. Risk factors for postoperative respiratory complications following esophageal cancer resection[J]. Oncol Lett, 2012, 3(4): 907-912. 

[115] Baker S, Waldrop M G, Swords J, et al. Timed stair-climbing as a surrogate marker for sarcopenia measurements in predicting surgical outcomes[J]. J Gastrointest Surg, 2019, 23(12): 2459-2465. 

[116] Reddy S, Contreras C M, Singletary B, et al. Timed stair climbing is the single strongest predictor of perioperative complications in patients undergoing abdominal surgery[J]. J Am Coll Surg, 2016, 222(4): 559-566. 

[117] 陈龙奇 , 李小飞 , 傅剑华 . 食管鳞癌术后随访中国胸外科专家共识 [J]. 中国胸心血管外科临床杂志 , 2022, 29(02): 141-149. 

[118] Obermannová R, Alsina M, Cervantes A, et al. Oesophageal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up[J]. Annals of Oncology : Official Journal of the European Society for Medical Oncology, 2022, 33(10): 992-1004. 

[119] Shapiro J, van Lanschot J J B, Hulshof M, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial[J]. The Lancet Oncology, 2015, 16(9): 1090-1098. 

[120] YANG H, LIU H, CHEN Y P, et al. Neoadjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of the esophagus (NEOCRTEC5010): a phase III multicenter, randomized, open-label clinical Trial[J]. J Clin Oncol, 2018, 36(27): 2796-2803. 

[121] NI W J, YANG J S, DENG W, et al. Patterns of recurrence after surgery and efficacy of salvage therapy after recurrence in patients with thoracic esophageal squamous cell carcinoma[J]. BMC cancer, 2020, 20(1): 144. 

[122] Rodríguez-Camacho E, Pita-Fernández S, Pértega-Díaz S, et al. Characteristics and pattern of recurrence after curative surgery in oesophageal cancer[J]. Revista espanola de enfermedades digestivas, 2015, 107(9): 539-546.

本期文章
[1] 机器人辅助乳腺癌腋窝淋巴结清扫术的初步探索(附手术视频) [2] 机器人辅助腹腔镜下盆腔脓肿清除术一例报道(附手术视频) [3] 机器人辅助胃癌根治术的优势及局限性 [4] 机器人辅助经腹宫颈环扎术的临床应用及技巧(附手术视频) [5] 机器人辅助食管癌根治术的应用现状与研究进展 [6] 机器人食管 Ivor Lewis 手术的临床应用 [7] CICARE 沟通模式联合健康教育在机器人辅助结肠癌手术患者中的效果 [8] 达芬奇手术机器人辅助胆囊癌根治术中加速康复护理与疼痛管理应用效果的评估 [9] 机器人辅助腔内手术治疗主动脉瘤患者的围手术期护理 [10] 建构主义理论教考联动模式用于机器人辅助手术护理带教对教学质量的影响 [11] 基于岗位胜任力的达芬奇机器人手术护士培训现状研究 [12] 脑卒中患者上肢机器人辅助训练文献的可视化分析 [13] 外骨骼机器人辅助康复训练对脊髓损伤患者的影响 [14] 下肢康复机器人联合针灸治疗在脑卒中偏瘫患者中的应用 [15] 下肢康复机器人联合康复锻炼治疗脑卒中患者步行障碍的效果观察 [16] 下肢外骨骼机器人在脊髓损伤患者康复过程中的应用及效果观察 [17] 康复机器人辅助训练在脑卒中后上肢功能障碍患者中的应用分析 [18] 环泊酚在机器人辅助腹腔镜下根治性前列腺癌切除术中的应用 [19] 丙泊酚靶控输注麻醉与七氟烷吸入麻醉对机器人辅助腹腔镜下根治性前列腺切除术中患者脑氧代谢及认知功能的影响 [20] 不同剂量右美托咪定联合盐酸艾司氯胺酮对机器人辅助腹腔镜下根治性前列腺切除术患者的影响 [21] 脑电双频指数指导下丙泊酚闭环靶控输注麻醉在经口腔前庭入路机器人辅助甲状腺切除术中的应用 [22] Mako 骨科手术机器人辅助人工全膝关节置换术的配合 [23] 机器人辅助骨科手术后深静脉血栓形成的影响因素及风险预警管理研究 [24] 机器人辅助椎弓根螺钉内固定术对无神经损伤胸腰椎骨折患者临床疗效的影响因素分析 [25] 疼痛管理联合积极心理干预在机器人导航辅助创伤性骨折治疗术患者中的应用效果 [26] 不同模式下骨科手术机器人微创经椎间孔入路腰椎椎间融合术的置钉准确性与手术效率比较 [27] 机器人辅助后交叉韧带重建术治疗后交叉韧带损伤的临床疗效研究 [28] 手术机器人联合 O 臂导航系统微创治疗对髋关节置换术患者出院准备度的影响 [29] 个性化冠状位对线全膝关节置换术临床疗效的 Meta 分析
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈