目的:探索在不同距离 5G 网络环境下国产图迈 ® 手术机器人在远程动物手术中的可行性、安全性及稳定性。 方法:将 6 头实验用标准猪随机分为 6 组,使用国产图迈 ® 手术机器人在 5G 网络环境下从甘肃省 6 个地区分别对 位于甘肃省人民医院动物手术室的 6 头实验猪实施远程胆囊切除手术。对实验过程中的网络速率、网络延迟、调试 时间、装机时间、手术时间、失血量、不良事件和术中并发症进行记录。结果:本次实验历时 15 d 完成,累计往返 距离超过 3000 km,最远的手术直线距离约为 780 km,6 台远程动物胆囊切除手术均在 5G 网络环境下顺利完成。平 均网络延迟为(55.16±25.33) ms,平均调试时间为(65.17±13.75) min,平均装机时间为(5.12±1.60) min,平均 机器人操控时间为(22.00±5.40) min,平均总手术时间为(44.00±4.23) min,平均失血量为(5.83±7.36) mL,术 中发生弱网不良事件 1 次,无术中并发症发生。结论:5G 网络环境下使用国产图迈 ® 手术机器人可以安全、稳定地 进行远程动物手术,这为实现远程机器人临床手术奠定了理论基础。
Objective: To explore the feasibility, safety and stability of the domestic Toumai® surgical robot in remote animal experiments under different distances of 5G network environment. Methods: 6 standard pigs were randomly divided into 6 groups, and the Toumai® surgical robot was used to perform remote cholecystectomy on experimental pigs located in the animal operating room of Gansu Provincial Hospital from 6 different locations in Gansu Province under 5G network environment.The network rate, network delay, debugging time, loading time, operative time, blood loss, adverse events and intraoperative complications were recorded. Results: The experiment lasted 15 days, with a cumulative round-trip distance of >3000 km, and the farthest surgical distance was about 780 km. 6 remote animal cholecystectomies were successfully completed under 5G network environment, with the average network delay of (55.16±25.33) ms, the average commissioning time of (65.17±13.75) min, the average loading time of (5.12±1.60) min, the average robot manipulating time of (22.00±5.40) min, the average total operative time of (44.00±4.23) min, and the average blood loss of (5.83±7.36) mL. 1 case of intraoperative weak network connection was found, but there was no intraoperative complications occurred. Conclusion: Remote animal surgery can be safely and stably performed using domestic Toumai® surgical robot under 5G network environment, which provides a theoretical foundation for the remote robot-assisted surgery on human.
基金项目:国家自然科学基金(82260031);甘肃省自然科学基金(21JR11RA186);甘肃省青年科技基金(20JR10RA415); 甘肃省院内科研基金项目(21GSSYB-8,20GSSY5-2)
Foundation Item: National Natural Science Foundation of China(82260031); Natural Science Foundation of Gansu Province (21JR11RA186); Youth Science and Technology Fund of Gansu Province (20JR10RA415); Scientific Research Funding Project of Gansu Provincial Hospital (21GSSYB-8, 20GSSY5-2)
通讯作者:蔡辉,Email:caialonteam@163.com;杨婧,Email:21634604@qq.com
Corresponding Author: CAI Hui, Email: caialonteam@163.com; YANG Jing, Email: 21634604@qq.com
引用格式:马世勋,狐鸣,马云涛,等 . 基于 5G 网络的图迈 ® 手术机器人远程动物实验研究 [J]. 机器人外科学杂志(中英文), 2025,6(1):12-17,23.
Citation: MA S X , HU M , MA Y T , et al. Remote animal experiments with Toumai® surgical robot based on 5G network[J]. Chinese Journal of Robotic Surgery, 2025, 6(1): 12-17, 23.
注:马世勋,狐鸣为共同第一作者
Co-first author: MA Shixun, HU Ming
[1] Vimalananda V G, Brito J P, Eiland L A, et al. Appropriate use of telehealth visits in endocrinology: policy perspective of the endocrine society [J]. J Clin Endocrinol Metab, 2022, 107(11): 2953-2962.
[2] telemedicine Sosnowski R, during Kamecki the COVID-19 H, Joniau pandemic: S, et al. a challenge Introduction for now, of an opportunity for the future [J]. Eur Urol, 2020, 78(6): 820-821.
[3] Boehm K, Ziewers S, Brandt M P, et al. Telemedicine online visits in urology during the COVID-19 pandemic-potential, risk factors, and patients’ perspective [J]. Eur Urol, 2020, 78(1): 16-20.
[4] Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery [J]. Nature, 2001, 413(6854): 379-380.
[5] Marescaux J, Leroy J, Rubino F, et al. Transcontinental robotassisted remote telesurgery: feasibility and potential applications [J]. Ann Surg, 2002, 235(4): 487-492.
[6] 张辉 . 加快 5G 网络建设及应用支撑经济高质量发展—工业和 信息化部发布《关于推动 5G 加快发展的通知》[J]. 网信军民 融合 , 2020, (4): 37-39.
[7] Cadière G B, Himpens J, Germay O, et al. Feasibility of robotic laparoscopic surgery: 146 cases [J]. World J Surg, 2001, 25(11): 1467-1477.
[8] Fanfani F, Monterossi G, Fagotti A, et al. The new robotic TELELAP ALF-X in gynecological surgery: single-center experience [J]. Surg Endosc, 2016, 30(1): 215-221.
[9] YI B, WANG G H, LI J M, et al. The first clinical use of domestically produced Chinese minimally invasive surgical robot system “Micro Hand S” [J]. Surg Endosc, 2016, 30(6): 2649-2655.
[10] Hwang M, Kwon D S. K-FLEX: a flexible robotic platform for scarfree endoscopic surgery [J]. Int J Med Robot, 2020, 16(2): e2078.
[11] Lim J H, Lee W J, Park D W, et al. Robotic cholecystectomy using Revo-i Model MSR-5000, the newly developed Korean robotic surgical system: a preclinical study [J]. Surg Endosc, 2017, 31(8): 3391-3397.
[12] 佚名 . “图迈”腔镜手术机器人获批上市 [J]. 传感器世界 , 2022, 28(2): 38.
[13] 黄佳 , 田禹 , 陆佩吉 , 等 . 国产图迈 ® 微创腔镜手术机器人辅 助右肺上叶切除两例 [J]. 中国胸心血管外科临床杂志 , 2022, 29(4): 519-523.
[14] 盛俊杰 , 胡庆元 , 王可洲 , 等 . 《美国公共卫生署人道管理和使 用实验动物政策》(2015 年版 ) 简介 [J]. 实验动物与比较医学 , 2017, 37(4): 303-308.
[15] 周翔 , 王家寅 , 朱祥 , 等 . 超远程 5G 机器人辅助腹腔镜下精 索静脉高位结扎术 2 例报道及文献复习 [J]. 中华男科学杂志 , 2022, 28(8): 696-701.
[16] 韩彩文 , 姚亮 , 闫沛静 , 等 . 机器人辅助与传统腹腔镜胆囊切除 术治疗良性胆囊疾病疗效比较的 Meta 分析 [J]. 中国普通外科 杂志 , 2018, 27(8): 955-967.
[17] Qureshi H N, Manalastas M, Zaidi S M , et al. Service level agreements for 5G and beyond: overview, challenges and enablers of 5G-healthcare systems [J]. IEEE Access, 2021. DOI: 10.1109/ ACCESS.2020.3046927.
[18] Nguan C, Miller B, Patel R, et al. Pre-clinical remote telesurgery trial of a da Vinci telesurgery prototype [J]. Int J Med Robot, 2008, 4(4): 304-309.
[19] Rayman R, Croome K, Galbraith N, et al. Robotic telesurgery: a realworld comparison of ground-and satellite-based internet performance [J]. Int J Med Robot, 2007, 3(2): 111-116.
[20] You I, Sharma V, Atiquzzaman M, et al. GDTN: Genome-based delay tolerant network formation in Heterogeneous 5G using inter-UA collaboration [J]. PLoS One, 2016, 11(12): e0167913.
[21] Xu S, Perez M, Yang K, et al. Determination of the latency effects on surgical performance and the acceptable latency levels in telesurgery using the dV-Trainer (®) simulator [J]. Surg Endosc, 2014, 28(9): 2569-2576.