目的:探讨外骨骼机器人步态训练系统联合经颅直流电刺激(tDCS)对脑梗死患者下肢运动功能及步行能力 恢复的疗效。方法:选取 2022 年 1 月—2023 年 12 月于西安大兴医院治疗的脑梗死患者 120 例作为研究对象,采用 随机数表法将其分为对照组、机器人组、tDCS 组和联合治疗组,每组 30 例。四组患者均接受常规康复治疗,机器 人组在此基础上增加外骨骼机器人步态训练,tDCS 组增加 tDCS 治疗,联合治疗组同时接受外骨骼机器人步态训练 和 tDCS 治疗。于治疗前、治疗 4 周及治疗 8 周分别评估患者的下肢运动功能、平衡功能、步行能力及日常生活活 动能力及神经可塑性。结果:治疗 4 周和 8 周后,四组患者的 Fugl-Meyer 下肢运动功能量表(FMA-LE)评分、Berg 平衡量表(BBS)评分、10 米步行测试(10MWT)、功能性步行量表(FAC)评分、改良 Barthel 指数(MBI)评分、 脑卒中专用生活量表(SS-QOL)评分及运动诱发电位(MEP)潜伏期和波幅均较治疗前显著改善(P<0.05)。与对 照组相比,机器人组和 tDCS 组的各项评分均显著提高(P<0.05)。联合治疗组在 FMA-LE、BBS、10MWT、FAC、 SS-QOL 评分及 MEP 潜伏期和波幅方面显著优于其他三组(P<0.05),MBI 评分优于对照组和 tDCS 组(P<0.05), 但与机器人组差异无统计学意义(P>0.05)。结论:外骨骼机器人步态训练系统和 tDCS 均能有效改善脑梗死患者 的下肢运动功能、步行能力、日常生活活动能力和生活质量。两种方法联合应用具有协同效应,可能通过促进神经 可塑性,加速运动功能的康复,为脑梗死患者的康复治疗提供了新的有效方案。
Objective: To investigate the curative effect of exoskeleton robot gait training system and transcranial direct current stimulation (tDCS) on the recovery of lower limb motor function and walking ability in patients with cerebral infarction. Methods: 120 patients with cerebral infarction in Xi’an Daxing Hospital from January 2022 to December 2023 were selected and divided into the control group, robot group, tDCS group, and combination treatment group, with 30 patients in each group. All patients received conventional rehabilitation treatment, while the robot group added exoskeleton robot gait training, the tDCS group added tDCS therapy, and the combined treatment group received both exoskeleton robot gait training and tDCS therapy. Assessments of lower extremity motor function, balance function, walking ability, activities of daily living, and neuroplasticity were conducted before treatment, 4 weeks and 8 weeks after treatment. Results: After 4 and 8 weeks of treatment, the Fugl-Meyer assessment of lower extremity (FMA-LE) scores, Berg balance scale (BBS) scores, 10-meter walk test (10 MWT), functional ambulation category scale (FAC) scores, modified Barthel index (MBI) scores, stroke-specific quality of life scale (SS-QOL) scores, incubation period and amplitude of motor evoked potential (MEP) were all improved significantly compared to those before treatment (P<0.05). And all scores were significantly improved in both the robot group and the tDCS group compared to the control group (P<0.05). In terms of FMA-LE, BBS, 10 MWT, FAC, and SS-QOL scores, as well as incubation period and MEP amplitude (P<0.05), the combination treatment group outperformed the other three groups. Additionally, MBI scores of the combination treatment group were better than the control and tDCS groups (P<0.05), but the difference was not statistically significant comparing with the robot group (P>0.05). Conclusion: In patients with cerebral infarction, the exoskeleton robot gait training system and tDCS both can effectively improve the lower limb motor function, walking ability, activities of daily living, and quality of life. The combined application of the two methods has a synergistic effect, which may accelerate the rehabilitation of motor function through improving neuroplasticity and provide a new and effective scheme for the rehabilitation of cerebral infarction patients.
基金项目:2022 年度卫生健康科研项目(2022D071)
Foundation Item: 2022 Health Research Project(2022D071)
通讯作者:张大伟,Email:517101919@qq.com
Corresponding Author: ZHANG Dawei, Email: 517101919@qq.com
引用格式:郑春利,金岩春,张大伟 . 外骨骼机器人步态训练系统联合经颅直流电刺激对脑梗死患者下肢运动功能及步行能力恢 复的疗效研究 [J]. 机器人外科学杂志(中英文),2025,6(1):60-68.
Citation: ZHENG C L, JIN Y C, ZHANG D W. Curative effect of exoskeleton robot gait training system combined with transcranial direct current stimulation on the recovery of lower limb motor function and walking ability in patients with cerebral infarction[J]. Chinese Journal of Robotic Surgery, 2025, 6(1): 60-68.
[1] 王薇 , 蔡宾 , 刘广志 . 脑梗死急性期抗凝治疗研究进展 [J]. 中华 老年心脑血管病杂志 , 2022, 24(3): 335-336.
[2] GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 439-458.
[3] 王贤慧 , 周亦 , 刘晓蓉 , 等 . 应用新型抗凝药物预防脑梗死患者 的脑微出血进展情况及影响因素研究 [J]. 中华老年心脑血管病 杂志 , 2023, 25(2): 175-178.
[4] Moucheboeuf G, Griffier R, Gasq D, et al. Effects of robotic gait training after stroke: a meta-analysis[J]. Ann Phys Rehabil Med, 2020, 63(6): 518-534.
[5] Calafiore D, Negrini F, Tottoli N, et al. Efficacy of robotic exoskeleton for gait rehabilitation in patients with subacute stroke : a systematic review[J]. Eur J Phys Rehabil Med, 2022, 58(1): 1-8.
[6] Longatelli V, Pedrocchi A, Guanziroli E, et al. Robotic exoskeleton gait training in stroke: An electromyography-based evaluation[J]. Front Neurorobot, 2021, 15: 733738.
[7] Karunakaran K K, Gute S, Ames G R, et al. Effect of robotic exoskeleton gait training during acute stroke on functional ambulation[J]. NeuroRehabilitation, 2021, 48(4): 493-503.
[8] Baronchelli F, Zucchella C, Serrao M, et al. The effect of robotic assisted gait training with Lokomat® on balance control after stroke: systematic review and Meta-analysis[J]. Front Neurol, 2021, 12: 661815.
[9] Swank C, Sikka S, Driver S, et al. Feasibility of integrating robotic exoskeleton gait training in inpatient rehabilitation[J]. Disabil Rehabil Assist Technol, 2020, 15(4): 409-417.
[10] Solomons C D, Shanmugasundaram V. Transcranial direct current stimulation: a review of electrode characteristics and materials[J]. Med Eng Phys, 2020, 85: 63-74.
[11] Chase H W, Boudewyn M A, Carter C S, et al. Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation[J]. Mol Psychiatry, 2020, 25(2): 397-407.
[12] Elsner B, Kugler J, Pohl M, et al. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke[J]. Cochrane Database Syst Rev, 2020, 11(11): CD009645.
[13] Kaviannejad R, Karimian S M, Riahi E, et al. The neuroprotective effects of transcranial direct current stimulation on global cerebral ischemia and reperfusion via modulating apoptotic pathways[J]. Brain Res Bull, 2022, 186: 70-78.
[14] Salehinejad M A, Ghanavati E, Glinski B, et al. A systematic review of randomized controlled trials on efficacy and safety of transcranial direct current stimulation in major neurodevelopmental disorders: ADHD, autism, and dyslexia[J]. Brain Behav, 2022, 12(9): e2724.
[15] Edwards D J, Cortes M, Rykman-peltz A, et al. Clinical improvement with intensive robot-assisted arm training in chronic stroke is unchanged by supplementary tDCS[J]. Restor Neurol Neurosci, 2019, 37(2): 167-180.
[16] QIU S W, XU Y. Guidelines for acute ischemic stroke treatment[J]. Neuroscience Bulletin, 2020, 36(10): 1229-1232.
[17] BIAN M J, SHEN Y X, HUANG Y J, et al. A non-immersive virtual reality-based intervention to enhance lower-extremity motor function and gait in patients with subacute cerebral infarction: a pilot randomized controlled trial with 1-year follow-up[J]. Front Neurol, 2022, 13: 985700.
[18] LIU S H, YU H X, WANG Z X, et al. Correlation analysis of balance function with plantar pressure distribution and gait parameters in patients with cerebral infarction in the basal ganglia region[J]. Front Neurosci, 2023, 17: 1099843.
[19] Cheng D K, Nelson M, Brooks D, et al. Validation of strokespecific protocols for the 10-meter walk test and 6-minute walk test conducted using 15-meter and 30-meter walkways[J]. Top Stroke Rehabil, 2020, 27(4): 251-261.
[20] Yi H J, Lee D H, Hong B Y, et al. The long-term functional effect of thrombectomy on patients with middle cerebral artery occlusion who exhibit moderate to severe disability[J]. Medicina (Kaunas), 2021, 57(5): 509.
[21] JIA F, ZHAO Y, WANG Z, et al. Effect of graded motor imagery combined with repetitive transcranial magnetic stimulation on upper extremity motor function in stroke patients: a randomized controlled trial[J]. Arch Phys Med Rehabil, 2024, 105(5): 819-825.
[22] Rocha L S O, Gama G C B, Rocha R S B, et al. Constraint induced movement therapy increases functionality and quality of life after stroke[J]. J Stroke Cerebrovasc Dis, 2021, 30(6): 105774.
[23] LI P P, CHEN C Y, HUANG B Z, et al. Altered excitability of motor neuron pathways after stroke: more than upper motor neuron impairments[J]. Stroke Vasc Neurol, 2022, 7(6): 518-526.
[24] Nolan K J, Karunakaran K K, Chervin K, et al. Robotic exoskeleton gait training during acute stroke inpatient rehabilitation[J]. Front Neurorobot, 2020, 14: 581815.
[25] Gupta A, Prakash N B, Honavar P R. Gait training with robotic exoskeleton assisted rehabilitation system in patients with incomplete traumatic and non-traumatic spinal cord injury: a pilot study and review of literature[J]. Ann Indian Acad Neurol, 2023, 26(Suppl 1): S26-S31.
[26] Christodoulou V N, Varvarousis D N, Ntritsos G, et al. Robotic assisted and exoskeleton gait training effect in mental health and fatigue of multiple sclerosis patients. A systematic review and a metaanalysis[J]. Disabil Rehabil, 2024, 14: 1-12.
[27] Changcheng C, Li Y R, Chen C T. Assistive mobility control of a robotic hip-knee exoskeleton for gait training[J]. Sensors (Basel), 2022, 22(13): 5045.
[28] Boscutti A, Juliana Mendonca De Figueiredo, Dana Razouq, et al. Noninvasive brain stimulation techniques for treatment-resistant depression: transcranial magnetic stimulation and transcranial direct current stimulation[J]. Psychiatr Clin North Am, 2023, 46(2): 307-329.
[29] XIE R M, ZHANG Y L, JIN H N, et al. Effects of soft robotic exoskeleton for gait training on clinical and biomechanical gait outcomes in patients with sub-acute stroke: a randomized controlled pilot study[J]. Front Neurol, 2023, 14: 1296102.
[30] Hong-Yu L, Zhi-Jie Z, Juan L, et al. Effects of cerebellar transcranial direct current stimulation in patients with stroke: a systematic review[J]. Cerebellum, 2023, 22(5): 973-984.
[31] LYU Z, LIU F, XIU H, et al. Transcranial direct current stimulation for global cognitive functioning and ability in daily life activities in poststroke cognitive impairment: a systematic review and Metaanalysis[J]. Am J Phys Med Rehabil, 2023, 102(11): 965-974.
[32] Aprile I, Iacovelli C, Goffredo M, et al. Efficacy of end-effector Robot-Assisted Gait Training in subacute stroke patients: clinical and gait outcomes from a pilot bi-centre study[J]. NeuroRehabilitation, 2019, 45(2): 201-212.
[33] Williamson J N, James S A, He D, et al. High-definition transcranial direct current stimulation for upper extremity rehabilitation in moderate-to-severe ischemic stroke: a pilot study[J]. Front Hum Neurosci, 2023, 17: 1286238.