目的:评估肾肿瘤解剖评分联合肾周脂肪粘连评分对接受机器人辅助肾部分切除术的囊性肾肿物(cRM)患 者围手术期结果的预测价值。方法:回顾性分析两家三甲医院于 2016 年 3 月—2020 年 12 月接受机器人辅助肾部分 切除术的 50 例 cRM 患者的围手术期资料。评估患者 RENAL、术前解剖特征分类(PADUA)、梅奥粘连概率(MAP)、 肾周脂肪粘连(APF)评分,以切缘阴性、热缺血时间 <20 min、无严重术中或术后并发症的 MIC“三连胜”视为达 到最佳手术结果。统计患者达成 MIC 情况,通过受试者操作特征曲线(ROC)曲线分析评估各评分系统及组合评分 模型对 MIC 达成的预测价值,选取最优模型进行列线图分析,通过校准曲线、临床决策曲线以及 Hosmer-Lemeshow 检验来评估列线图的预测性能。结果:肾肿瘤解剖评分中 PADUA 评分系统略优于 RENAL 评分系统(AUC:0.782 Vs 0.720),肾周脂肪粘连评分中 MAP 评分系统略优于 APF 评分系统(AUC:0.629 Vs 0.525),但差异均无统计学 意义(P>0.05)。PADUA 评分与 MAP 评分的组合评分模型(AUC=0.822)预测能力优于任何一种单一评分模型或 组合评分模型,通过校准和决策曲线分析证实临床应用价值显著。结论:PADUA 评分与 MAP 评分的组合评分模型 在 cRM 患者术后 MIC 达成中表现出卓越的预测能力,可为此类患者接受机器人辅助手术的风险评估和术前决策提 供有力支持。
Objective: To assess the value of renal tumor anatomy score combined with perirenal fatty adhesions score in predicting the perioperative period outcomes of cystic renal mass (cRM) patients who underwent robot-assisted partial nephrectomy. Methods: 50 patients with cRM who underwent robot-assisted partial nephrectomy from March 2016 to December 2020 in two tertiary hospitals were selected, and their perioperative data were analyzed retrospectively. Patients’ RENAL, preoperative aspects and dimensions used for an anatomical (PADUA), Mayo adhesive probability (MAP), and adherent perinephric fat (APF) scores, and wether the MIC “trifecta” was achieved (negative margins, thermal ischemia time <20 min, and no serious intraoperative or postoperative complications) were assessed. ROC curves were used to evaluate the predictive value of each scoring system and combined scoring model for MIC trifecta. The best model was selected for nomogram analysis, and the Hosmer-Lemeshow test, calibration curves, and clinical decision curves were used to evaluate the predictive performance of nomogram. Results: In the renal tumor anatomy scoring, the PADUA scoring system outperformed the RENAL scoring system by a small margin (AUC: 0.782 Vs 0.720), and in the perirenal fatty adhesions scoring, the MAP scoring system outperformed the APF scoring system by a small margin (AUC: 0.629 Vs 0.525). But none of the differences was statistically significant (P>0.05). The predictive ability of the combined scoring model of the PADUA score and MAP score (AUC=0.822) was superior to any single scoring model or the combined scoring model, and the significant value of clinical application was confirmed by calibration and decision curve analysis. Conclusion: The combined scoring model of the PADUA score and MAP score showed excellent predictive ability in predicting postoperative MIC in patients with cRM, which can provide powerful support for risk assessment and preoperative decision-making for patients who will undergo robot-assisted surgery.
基金项目:陕西省重点研发计划项目(2018SF-158)
Foundation Item: Key R&D Plan Project of Shaanxi Province (2018SF-158)
通讯作者:吴大鹏,Email:wudapeng@xjtufh.edu.cn
Corresponding Author: WU Dapeng, Email: wudapeng@xjtufh.edu.cn
引用格式:王宝,陈博宏,黄昊翔,等 . 肾肿瘤解剖评分联合肾周脂肪粘连评分对囊性肾肿物患者围手术期结果的预测价值分析 [J]. 机器人外科学杂志(中英文),2025,6(1):107-112,117.
Citation: WANG B, CHEN B H, HUANG H X, et al. Value of renal tumor anatomy score combined with perirenal fatty adhesions score in predicting perioperative outcomes of patients with cystic renal masses[J]. Chinese Journal of Robotic Surgery, 2025, 6(1): 107-112, 117.
[1] Graumann O, Osther S S, Karstoft J, et al. Bosniak classification system: inter-observer and intra-observer agreement among experienced uroradiologists[J]. Acta Radiol, 2015, 56(3): 374-383.
[2] Akca O, Zargar H, Autorino R, et al. Robotic partial nephrectomy for cystic renal masses: a comparative analysis of a matched-paired cohort[J]. Urology, 2014, 84(1): 93-98.
[3] Spaliviero M, Herts B R, Magi-Galluzzi C, et al. Laparoscopic partial nephrectomy for cystic masses[J]. J Urol, 2005, 174(2): 614-619.
[4] Abdel Raheem A, Alatawi A, Soto I, et al. Robot-assisted partial nephrectomy confers excellent long-term outcomes for the treatment of complex cystic renal tumors: median follow up of 58 months[J]. Int J Urol, 2016, 23(12): 976-982.
[5] Veccia A, Antonelli A, Uzzo R G, et al. Predictive value of nephrometry scores in nephron-sparing surgery: a systematic review and meta-analysis[J]. Eur Urol Focus, 2020, 6(3): 490-504.
[6] Dahlkamp L, Haeuser L, Winnekendonk G, et al. Interdisciplinary comparison of PADUA and R.E.N.A.L. scoring systems for prediction of conversion to nephrectomy in patients with renal mass scheduled for nephron sparing surgery[J]. J Urol, 2019, 202(5): 890-898.
[7] Kobayashi K, Saito T, Kitamura Y, et al. The RENAL nephrometry score and the PADUA classification for the prediction of perioperative outcomes in patients receiving nephron-sparing surgery: feasible tools to predict intraoperative conversion to nephrectomy[J]. Urol Int, 2013, 91(3): 261-268.
[8] Bier S, Aufderklamm S, Todenhöfer T, et al. Prediction of postoperative risks in laparoscopic partial nephrectomy using RENAL, Mayo adhesive probability and renal pelvic score[J]. Anticancer Res, 2017, 37(3): 1369-1373.
[9] Davidiuk A J, Parker A S, Thomas C S, et al. Prospective evaluation of the association of adherent perinephric fat with perioperative outcomes of robotic-assisted partial nephrectomy[J]. Urology, 2015, 85(4): 836-842.
[10] Ficarra V, Novara G, Secco S, et al. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery[J]. Eur Urol, 2009, 56(5): 786-793.
[11] Davidiuk A J, Parker A S, Thomas C S, et al. Mayo adhesive probability score: an accurate image-based scoring system to predict adherent perinephric fat in partial nephrectomy[J]. Eur Urol, 2014, 66(6): 1165-1171.
[12] Borregales L D, Adibi M, Thomas A Z, et al. Predicting adherent perinephric fat using preoperative clinical and radiological factors in patients undergoing partial nephrectomy[J]. Eur Urol Focus, 2021, 7(2): 397-403.
[13] Dell-Kuster S, Gomes N V, Gawria L, et al. Prospective validation of classification of intraoperative adverse events (ClassIntra): international, multicentre cohort study[J]. Bmj, 2020, 370: m2917.
[14] Mitropoulos D, Artibani W, Biyani C S, et al. Validation of the Clavien-Dindo grading system in urology by the European Association of Urology Guidelines Ad Hoc Panel [J]. Eur Urol Focus, 2018, 4(4): 608-613.
[15] Wahal S P, Mardi K. Multilocular cystic renal cell carcinoma: a rare entity with review of literature [J]. J Lab Physicians, 2014, 6(1): 50-52.
[16] Schoots I G, Zaccai K, Hunink M G, et al. Bosniak classification for complex renal cysts reevaluated: a systematic review[J]. J Urol, 2017, 198(1): 12-21.
[17] Silverman S G, Pedrosa I, Ellis J H, et al. Bosniak classification of cystic renal masses, version 2019: an update proposal and needs assessment[J]. Radiology, 2019, 292(2): 475-488.
[18] Pruthi D K, Liu Q Q, Kirkpatrick I D C, et al. Long-term surveillance of complex cystic renal masses and heterogeneity of bosniak 3 lesions[J]. J Urol, 2019. DOI: 10.1097/JU.0000000000000144.
[19] PAN X Y, ZHANG M N, YAO J, et al. Fumaratehydratase-deficient renal cell carcinoma: a clinicopathological and molecular study of 13 cases[J]. J Clin Pathol, 2019, 72(11): 748-754.
[20] Daza J, Okhawere K E, Ige O, et al. The role of RENAL score in predicting complications after robotic partial nephrectomy[J]. Minerva Urol Nephrol, 2022, 74(1): 57-62.
[21] Yagisawa T, Takagi T, Yoshida K, et al. Surgical outcomes of robotassisted laparoscopic partial nephrectomy for cystic renal cell carcinoma[J]. J Robot Surg, 2022, 16(3): 649-654.
[22] CHEN S Z, WU Y P, CHEN S H, et al. Risk factors for intraoperative cyst rupture in partial nephrectomy for cystic renal masses[J]. Asian J Surg, 2021, 44(1): 80-86.
[23] Khene Z E, Peyronnet B, Mathieu R, et al. Analysis of the impact of adherent perirenal fat on peri-operative outcomes of robotic partial nephrectomy[J]. World J Urol, 2015, 33(11): 1801-1806.
[24] Khene Z E, Dosin G, Peyronnet B, et al. Adherent perinephric fat affects perioperative outcomes after partial nephrectomy: a systematic review and meta-analysis[J]. Int J Clin Oncol, 2021, 26(4): 636-646.
[25] Abdallah N, Wood A, Benidir T, et al. AI-generated R.E.N.A.L.+ score surpasses human-generated score in predicting renal oncologic outcomes[J]. Urology, 2023. DOI: 10.1016/j.urology.2023.07.017.
[26] 郑亮 , 陈博宏 , 黄昊翔 , 等 . 通过优化 RENAL 和 MAP 评分构 建预测机器人辅助肾部分切除术围手术期结局的 RP 评分系统 [J/OL]. 现代泌尿外科杂志 , 1-6[2024-12-16]. http: //kns.cnki.net/ kcms/detail/61.1374.R.20240829.1013.002.html.
[27] JIN D C, ZHANG J Y, ZHANG Y F, et al. A combination of the mayo adhesive probability score and the RENAL score to predict intraoperative complications in small renal masses[J]. Urol Int, 2020, 104(1-2): 142-147.
[28] YANG B, MA L L, QIU M, et al. A novel nephrometry scoring system for predicting peri-operative outcomes of retroperitoneal laparoscopic partial nephrectomy[J]. Chin Med J (Engl), 2020, 133(5): 577-582.
[29] TAN X J, JIN D C, HU J, et al. Development of a simple nomogram to estimate risk for intraoperative complications before partial nephrectomy based on the mayo adhesive probability score combined with the RENAL nephrometry score[J]. Investig Clin Urol, 2021, 62(4): 455-461.
[30] Crockett M G, Giona S, Whiting D, et al. Nephrometry scores: a validation of three systems for peri-operative outcomes in retroperitoneal robot-assisted partial nephrectomy[J]. BJU Int, 2021, 128(1): 36-45.