Advertisement
中国的机器人外科学杂志 | ISSN 2096-7721 | CN 10-1650/R

肾肿瘤解剖评分联合肾周脂肪粘连评分对囊性肾肿物患者围手术期结果的预测价值分析

Value of renal tumor anatomy score combined with perirenal fatty adhesions score in predicting perioperative outcomes of patients with cystic renal masses

作者:王宝,陈博宏,黄昊翔,冯聪,曾津,陈炜,吴大鹏

Vol. 6 No. 1 Jan. 2025 DOI: 10.12180/j.issn.2096-7721.2025.01.018 发布日期:2025-02-10
关键词:囊性肾肿物;机器人辅助肾部分切除术;肾肿瘤解剖评分;肾周脂肪粘连评分

作者简介:

目的:评估肾肿瘤解剖评分联合肾周脂肪粘连评分对接受机器人辅助肾部分切除术的囊性肾肿物(cRM)患 者围手术期结果的预测价值。方法:回顾性分析两家三甲医院于 2016 年 3 月—2020 年 12 月接受机器人辅助肾部分 切除术的 50 例 cRM 患者的围手术期资料。评估患者 RENAL、术前解剖特征分类(PADUA)、梅奥粘连概率(MAP)、 肾周脂肪粘连(APF)评分,以切缘阴性、热缺血时间 <20 min、无严重术中或术后并发症的 MIC“三连胜”视为达 到最佳手术结果。统计患者达成 MIC 情况,通过受试者操作特征曲线(ROC)曲线分析评估各评分系统及组合评分 模型对 MIC 达成的预测价值,选取最优模型进行列线图分析,通过校准曲线、临床决策曲线以及 Hosmer-Lemeshow 检验来评估列线图的预测性能。结果:肾肿瘤解剖评分中 PADUA 评分系统略优于 RENAL 评分系统(AUC:0.782  Vs 0.720),肾周脂肪粘连评分中 MAP 评分系统略优于 APF 评分系统(AUC:0.629 Vs 0.525),但差异均无统计学 意义(P>0.05)。PADUA 评分与 MAP 评分的组合评分模型(AUC=0.822)预测能力优于任何一种单一评分模型或 组合评分模型,通过校准和决策曲线分析证实临床应用价值显著。结论:PADUA 评分与 MAP 评分的组合评分模型 在 cRM 患者术后 MIC 达成中表现出卓越的预测能力,可为此类患者接受机器人辅助手术的风险评估和术前决策提 供有力支持。

Objective: To assess the value of renal tumor anatomy score combined with perirenal fatty adhesions score in predicting the perioperative period outcomes of cystic renal mass (cRM) patients who underwent robot-assisted partial nephrectomy. Methods: 50 patients with cRM who underwent robot-assisted partial nephrectomy from March 2016 to December 2020 in two tertiary hospitals were selected, and their perioperative data were analyzed retrospectively. Patients’ RENAL, preoperative aspects and dimensions used for an anatomical (PADUA), Mayo adhesive probability (MAP), and adherent perinephric fat (APF) scores, and wether the MIC “trifecta” was achieved (negative margins, thermal ischemia time <20 min, and no serious intraoperative or postoperative complications) were assessed. ROC curves were used to evaluate the predictive value of each scoring system and combined scoring model for MIC trifecta. The best model was selected for nomogram analysis, and the Hosmer-Lemeshow test, calibration curves, and clinical decision curves were used to evaluate the predictive performance of nomogram. Results: In the renal tumor anatomy scoring, the PADUA scoring system outperformed the RENAL scoring system by a small margin (AUC: 0.782 Vs 0.720), and in the perirenal fatty adhesions scoring, the MAP scoring system outperformed the APF scoring system by a small margin (AUC: 0.629 Vs 0.525). But none of the differences was statistically significant (P>0.05). The predictive ability of the combined scoring model of the PADUA score and MAP score (AUC=0.822) was superior to any single scoring model or the combined scoring model, and the significant value of clinical application was confirmed by calibration and decision curve analysis. Conclusion: The combined scoring model of the PADUA score and MAP score showed excellent predictive ability in predicting postoperative MIC in patients with cRM, which can provide powerful support for risk assessment and preoperative decision-making for patients who will undergo robot-assisted surgery.

稿件信息

基金项目:陕西省重点研发计划项目(2018SF-158) 

Foundation Item: Key R&D Plan Project of Shaanxi Province (2018SF-158) 

通讯作者:吴大鹏,Email:wudapeng@xjtufh.edu.cn 

Corresponding Author: WU Dapeng, Email: wudapeng@xjtufh.edu.cn 

引用格式:王宝,陈博宏,黄昊翔,等 . 肾肿瘤解剖评分联合肾周脂肪粘连评分对囊性肾肿物患者围手术期结果的预测价值分析 [J]. 机器人外科学杂志(中英文),2025,6(1):107-112,117. 

Citation: WANG B, CHEN B H, HUANG H X, et al. Value of renal tumor anatomy score combined with perirenal fatty adhesions  score in predicting perioperative outcomes of patients with cystic renal masses[J]. Chinese Journal of Robotic Surgery, 2025,  6(1): 107-112, 117.

参考文献

[1] Graumann O, Osther S S, Karstoft J, et al. Bosniak classification system: inter-observer and intra-observer agreement among experienced uroradiologists[J]. Acta Radiol, 2015, 56(3): 374-383. 

[2] Akca O, Zargar H, Autorino R, et al. Robotic partial nephrectomy for cystic renal masses: a comparative analysis of a matched-paired cohort[J]. Urology, 2014, 84(1): 93-98. 

[3] Spaliviero M, Herts B R, Magi-Galluzzi C, et al. Laparoscopic partial nephrectomy for cystic masses[J]. J Urol, 2005, 174(2): 614-619. 

[4] Abdel Raheem A, Alatawi A, Soto I, et al. Robot-assisted partial nephrectomy confers excellent long-term outcomes for the treatment of complex cystic renal tumors: median follow up of 58 months[J]. Int J Urol, 2016, 23(12): 976-982. 

[5] Veccia A, Antonelli A, Uzzo R G, et al. Predictive value of nephrometry scores in nephron-sparing surgery: a systematic review and meta-analysis[J]. Eur Urol Focus, 2020, 6(3): 490-504. 

[6] Dahlkamp L, Haeuser L, Winnekendonk G, et al. Interdisciplinary comparison of PADUA and R.E.N.A.L. scoring systems for prediction of conversion to nephrectomy in patients with renal mass scheduled for nephron sparing surgery[J]. J Urol, 2019, 202(5): 890-898.

[7] Kobayashi K, Saito T, Kitamura Y, et al. The RENAL nephrometry score and the PADUA classification for the prediction of perioperative outcomes in patients receiving nephron-sparing surgery: feasible tools to predict intraoperative conversion to nephrectomy[J]. Urol Int, 2013, 91(3): 261-268. 

[8] Bier S, Aufderklamm S, Todenhöfer T, et al. Prediction of postoperative risks in laparoscopic partial nephrectomy using RENAL, Mayo adhesive probability and renal pelvic score[J]. Anticancer Res, 2017, 37(3): 1369-1373. 

[9] Davidiuk A J, Parker A S, Thomas C S, et al. Prospective evaluation of the association of adherent perinephric fat with perioperative outcomes of robotic-assisted partial nephrectomy[J]. Urology, 2015, 85(4): 836-842. 

[10] Ficarra V, Novara G, Secco S, et al. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery[J]. Eur Urol, 2009, 56(5): 786-793. 

[11] Davidiuk A J, Parker A S, Thomas C S, et al. Mayo adhesive probability score: an accurate image-based scoring system to predict adherent perinephric fat in partial nephrectomy[J]. Eur Urol, 2014, 66(6): 1165-1171. 

[12] Borregales L D, Adibi M, Thomas A Z, et al. Predicting adherent perinephric fat using preoperative clinical and radiological factors in patients undergoing partial nephrectomy[J]. Eur Urol Focus, 2021, 7(2): 397-403. 

[13] Dell-Kuster S, Gomes N V, Gawria L, et al. Prospective validation of classification of intraoperative adverse events (ClassIntra): international, multicentre cohort study[J]. Bmj, 2020, 370: m2917. 

[14] Mitropoulos D, Artibani W, Biyani C S, et al. Validation of the Clavien-Dindo grading system in urology by the European Association of Urology Guidelines Ad Hoc Panel [J]. Eur Urol Focus, 2018, 4(4): 608-613. 

[15] Wahal S P, Mardi K. Multilocular cystic renal cell carcinoma: a rare entity with review of literature [J]. J Lab Physicians, 2014, 6(1): 50-52. 

[16] Schoots I G, Zaccai K, Hunink M G, et al. Bosniak classification for complex renal cysts reevaluated: a systematic review[J]. J Urol, 2017, 198(1): 12-21. 

[17] Silverman S G, Pedrosa I, Ellis J H, et al. Bosniak classification of cystic renal masses, version 2019: an update proposal and needs assessment[J]. Radiology, 2019, 292(2): 475-488. 

[18] Pruthi D K, Liu Q Q, Kirkpatrick I D C, et al. Long-term surveillance of complex cystic renal masses and heterogeneity of bosniak 3 lesions[J]. J Urol, 2019. DOI: 10.1097/JU.0000000000000144. 

[19] PAN X Y, ZHANG M N, YAO J, et al. Fumaratehydratase-deficient renal cell carcinoma: a clinicopathological and molecular study of 13 cases[J]. J Clin Pathol, 2019, 72(11): 748-754. 

[20] Daza J, Okhawere K E, Ige O, et al. The role of RENAL score in predicting complications after robotic partial nephrectomy[J]. Minerva Urol Nephrol, 2022, 74(1): 57-62. 

[21] Yagisawa T, Takagi T, Yoshida K, et al. Surgical outcomes of robotassisted laparoscopic partial nephrectomy for cystic renal cell carcinoma[J]. J Robot Surg, 2022, 16(3): 649-654. 

[22] CHEN S Z, WU Y P, CHEN S H, et al. Risk factors for intraoperative cyst rupture in partial nephrectomy for cystic renal masses[J]. Asian J Surg, 2021, 44(1): 80-86. 

[23] Khene Z E, Peyronnet B, Mathieu R, et al. Analysis of the impact of adherent perirenal fat on peri-operative outcomes of robotic partial nephrectomy[J]. World J Urol, 2015, 33(11): 1801-1806. 

[24] Khene Z E, Dosin G, Peyronnet B, et al. Adherent perinephric fat affects perioperative outcomes after partial nephrectomy: a systematic review and meta-analysis[J]. Int J Clin Oncol, 2021, 26(4): 636-646.

[25] Abdallah N, Wood A, Benidir T, et al. AI-generated R.E.N.A.L.+ score surpasses human-generated score in predicting renal oncologic outcomes[J]. Urology, 2023. DOI: 10.1016/j.urology.2023.07.017. 

[26] 郑亮 , 陈博宏 , 黄昊翔 , 等 . 通过优化 RENAL 和 MAP 评分构 建预测机器人辅助肾部分切除术围手术期结局的 RP 评分系统 [J/OL]. 现代泌尿外科杂志 , 1-6[2024-12-16]. http: //kns.cnki.net/ kcms/detail/61.1374.R.20240829.1013.002.html. 

[27] JIN D C, ZHANG J Y, ZHANG Y F, et al. A combination of the mayo adhesive probability score and the RENAL score to predict intraoperative complications in small renal masses[J]. Urol Int, 2020, 104(1-2): 142-147. 

[28] YANG B, MA L L, QIU M, et al. A novel nephrometry scoring system for predicting peri-operative outcomes of retroperitoneal laparoscopic partial nephrectomy[J]. Chin Med J (Engl), 2020, 133(5): 577-582. 

[29] TAN X J, JIN D C, HU J, et al. Development of a simple nomogram to estimate risk for intraoperative complications before partial nephrectomy based on the mayo adhesive probability score combined with the RENAL nephrometry score[J]. Investig Clin Urol, 2021, 62(4): 455-461. 

[30] Crockett M G, Giona S, Whiting D, et al. Nephrometry scores: a validation of three systems for peri-operative outcomes in retroperitoneal robot-assisted partial nephrectomy[J]. BJU Int, 2021, 128(1): 36-45.

本期文章
[1] 机器人辅助手术治疗子宫内膜癌中国专家共识(2025 年版):附手术视频 [2] 手术机器人在儿童泌尿外科下尿路重建手术中的应用 [3] 机器人辅助前哨淋巴结活检在早期子宫内膜癌手术中的应用 [4] 根治性前列腺切除术的演进与三种术式比较 [5] 达芬奇机器人手术系统在非小细胞肺癌手术中的成本效益分析 [6] 自主式口腔种植机器人辅助下颌 all-on-6 种植即刻修复一例报道(附手术视频) [7] 加速康复外科理念在机器人辅助腹腔镜下根治性前列腺切除术护理中的应用 [8] 机器人辅助根治性膀胱切除术患者采取术中体温管理后围术期低体温发生情况及其影响因素 [9] 参与共治理念下心理 - 认知干预在经口入路机器人辅助甲状腺手术中的应用 [10] 腹腔镜手术虚拟现实系统在外科医师培训中的应用 [11] 电刺激联合盆底肌肉训练辅以心理干预疗法对机器人辅助根治性前列腺切除术后患者尿失禁的影响 [12] 肾肿瘤解剖评分联合肾周脂肪粘连评分对囊性肾肿物患者围手术期结果的预测价值分析 [13] 机器人辅助根治性膀胱切除术患者术后早期并发症危险因素分析及应对策略研究 [14] 机器人辅助免溶脂技术在男性乳腺发育手术中的应用 [15] 机器人辅助保留十二指肠胰头切除术治疗婴儿高胰岛素血症的病例探讨(附手术视频) [16] 基于眼动追踪技术足踝运动认知双重任务评估系统的信效度研究 [17] 任务导向型上肢康复机器人训练在脑卒中后上肢功能恢复中的疗效研究 [18] 手部康复训练联合上肢康复机器人在脑梗死上肢功能障碍患者中的应用效果 [19] 外骨骼机器人步态训练系统联合经颅直流电刺激对脑梗死患者下肢运动功能及步行能力恢复的疗效研究 [20] 亚麻醉剂量艾司氯胺酮联合肋缘下腹横肌平面阻滞在机器人辅助根治性膀胱切除术患者中的应用效果 [21] 机器人辅助下乳腺癌根治术患者行超声引导下Ⅱ型胸神经阻滞术后镇痛效果及影响因素 [22] 超声引导腹横肌平面阻滞麻醉联合静脉滴注纳布啡在机器人辅助根治性前列腺切除术患者中的应用效果 [23] 硬膜外麻醉联合全身麻醉在机器人辅助根治性前列腺切除术患者中的应用效果 [24] 5G 远程机器人辅助结肠癌根治术一例报道并文献复习(附手术视频) [25] 基于全球首例 5G 远程机器人辅助袖状胃切除术的可行性分析(附手术视频) [26] 5G 远程机器人辅助远端胃癌根治术一例报道(附手术视频) [27] 基于 5G 网络的图迈 ® 手术机器人远程动物实验研究 [28] “双中心”背景下 5G 远程机器人外科的发展机遇与挑战 [29] 5G 远程机器人手术的应用现状及展望
印象笔记
有道云笔记
微博
QQ空间
微信
二维码
意见反馈