[1]Zorowitz R D, Gillard P J, Brainin M. Poststroke spasticity: sequelae and burden on stroke survivors and caregivers[J]. Neurology, 2013, 80(3): S45-S52.
[2]ZHANG Z J, ZHENG L N, YU J M, et al. Three recurrent neural networks and three numerical methods for solving a repetitive motion planning scheme of redundant robot manipulators[J]. IEEE-ASME Trans Mechatron, 2017, 22(3): 1423-1434.
[3]JIN L, LI S, LUO X, et al. Neural dynamics for cooperative control of redundant robot manipulators[J]. IEEE Trans Ind Informat, 2018, 14(9): 3812-3821.
[4] YANG C, GUO S X, BAO X Q, et al. A vascular interventional surgical robot based on surgeons operating skills[J]. Med Biol Eng Comput, 2019, 57(3):1999-2020.
[5]Kim Y M, Koo S Y, Lim J G, et al. A robust online touch pattern recognition for dynamic human-robot interaction[J]. IEEE Trans. Consum. Electron., 2010, 56(3): 1979-1987.
[6]LI Z J, SU C Y, LI G L, et al. Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs[J]. IEEE Trans Fuzzy Syst, 2015, 23(3): 555-566.
[7] Han J H, Lee S J, Kim J H, et al. Behavior hierarchy-based affordance map for recognition of human intention and its application to human-robot interaction[J]. IEEETrans Hum-Mach Syst, 2016, 46(5): 708-722.
[8]Nam Y, Koo B, Cichocki A, et al. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control[J]. IEEE Trans Biomed. Eng, 2013, 61(2): 453-462.
[9] Kumar S, Sharma A. A new parameter tuning approach for enhanced motor imagery EEG signal classification[J].Med Biol Eng Comput, 2018, 56(10): 1861-1874.
[10] DUAN F, DAI L L, CHANG W N, et al. SEMG-based identification of hand motion commands using wavelet neural network combined with discrete wavelet transform[J]. IEEE Trans Ind Electron, 2015, 63(3):1923-1934.
[11] LIU Y J, LI J, TONG S, et al. Neural network control-based adaptive learning design for nonlinear systems with full-state constraints[J]. IEEE Trans Neural Netw Learn Syst, 2016, 27(7): 1562-1571.
[12] Artemiadis P K, Kyriakopoulos K J. An EMG-basedrobot control scheme robust to time-varying emg signal features[J]. IEEE T Inf Technol B, 2010, 14(3): 582-588.
[13] SHI J, ZHENG Y P, YAN Z Z. SVM for estimation of wrist angle from sonomyography and sEMG signals[C].IEEE International Conference on EMBS, 2007: 806-4809.
[14] Hill A V. The heat of shortening and the dynamic constants of muscle[J]. Proc. of Royal Society of London, Series B, 1938, 126(843): 136-195.
[15] HAN J D, DING Q C, XIONG A B, et al. A state-space EMG model for the estimation of continuous joint movements[J]. IEEE Trans Ind Electron, 2015, 62(7): 4267-4275.
[16] DING Q C, HAN J D, ZHAO X G. Continuous estimation of human multi-joint angles from semg using a state-space model[J]. IEEE Trans Neural Syst Rehabil Eng, 2016, 25(9): 1518-1528.
[17] XIA Y S, FENG G, WANG J. A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control[J]. IEEE Trans Cybern, 2005, 35(1): 54-64.
[18] JIN L, LI S, LIN B L, et al. Zeroing neural networks: a survey[J]. Neurocomputing, 2017, 267(6): 597-604.
[19] JIN L, LI S, YU JG, et al. Robot manipulator control using neural networks: a survey[J]. Neurocomputing, 2018, 285(12): 23-24.
[20] SUN Z B, LI F, ZHANG B C, et al. Different modified zeroing neural dynamics with inherent tolerance to noises for time-varying reciprocal problems: A control-theoretic approach[J]. Neurocomputing, 2019, 337:165-179.
[21] SUN Z B, LIU Y B, WEI L, et al. Two dtznn models of O (τ2) pattern for online solving dynamic system of linear equations: application to manipulator motion generation[J]. IEEE Access, 2020, 8: 36624-36638.
[22] ZHANG F, LI P F, HOU Z G, et al. sEMG-based continuous estimation of joint angles of human legs by using BP neural network[J]. Neurocomputing, 2012, 78(1): 139-148.
[23] Aung Y M, Al-jumail Y A. Estimation of upper limb joint angle using surface EMG signal[J]. Int J Adv Robot Syst, 2013, 10(369): 1-8.
[24] WANG G, LIU Y B, SHI T, et al. A novel estimation approach of semg-based joint movements via RBF neural network[C]. 2019 Chinese Automation Congress, 2020: 2059-2064.
[25] GAO X Z, GAO X M, Ovaska S J. A modified Elman neural network model with application to dynamical systems identification[C]. IEEE International Conference on Systems, 1996: 1376-1381.
[26] Boxtel A, Boelhouwer A J W, Bos A R. Optimal EMG signal bandwidth and interelectrode distance for the recording of acoustic, electrocutaneous, and photic blink reflexes[J]. Psychophysiology, 1998, 35(6): 690-697.
[27] Christie A, Greig Inglis J, Kamen G, et al. Relationships between surface EMG variables and motor unit firing rates[J]. Eur J Appl Physiol, 2009, 107(2): 177-185.