[1] DSouza A V, Lin H, Henderson E R, et al. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging[J]. Journal of Biomedical Optics, 2016. DOI: 10. 1117/1. JBO. 21. 8. 080901.
[2] Zhu B, Sevick-Muraca E M. A review of performance of near-infrared fluorescence imaging devices used in clinical studies[J]. Br J Radiol, 2015. DOI: 10. 1259/ bjr. 20140547.
[3] Nagata K, Endo S, Hidaka E, et al. Laparoscopic sentinel node mapping for colorectal cancer using infrared ray laparoscopy[J]. Anticancer Res, 2006, 26(3B) : 2307-2311.
[4] Labrinus van M, Henricus J M, Michele D, et al. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery[J]. Journal of Surgical Oncology, 2018. DOI: 10. 1002/jso. 25105.
[5] Miyoshi N, Ohue M, Noura S, et al. Surgical usefulness of indocyanine green as an alternative to India ink for endoscopic marking[J]. Surg Endosc, 2009, 23(2): 347- 351.
[6] Holt D, Parthasarathy A B, Okusanya O, et al. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds[J]. Journal of Biomedical Optics, 2015. DOI: 10. 1117/1. JBO. 20. 7. 076002.
[7] Nagaya T, Nakamura Y A, Choyke P L, et al. Fluorescence-Guided Surgery[J]. Front Oncol, 2017. DOI: 10. 3389/fonc. 2017. 00314.
[8] K u d s z u s S , R o e s e l C , S c h a c h t r u p p A , e t a l . Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage[J]. Langenbecks Arch Surg, 2010. DOI: 10. 1007/s00423-010-0699-x.
[9] Jafari M D, Wexner S D, Martz J E, et al. Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study[J]. J Am Coll Surg, 2015. DOI: 10. 1016/j. jamcollsurg. 2014. 09. 015.
[10] Kawada K, Hasegawa S, Wada T, et al. Evaluation of intestinal perfusion by ICG fluorescence imaging in laparoscopic colorectal surgery with DST anastomosis [J]. Surg Endosc, 2017, 31(3): 1061-1069.
[11] Noura S, Ohue M, Seki Y, et al. Feasibility of a lateral region sentinel node biopsy of lower rectal cancer guided by indocyanine green using a near-infrared camera system [J]. Ann Surg Oncol, 2010, 17(1): 144- 151.
[12] Ishizuka M, Nagata H, Takagi K, et al. Fluorescence imaging visualizes three sets of regional lymph nodes in patients with lower rectal cancer[J]. Hepatogastroenterology, 2012, 59(117): 1381-1384. 2020,1(5):332-337. Citation: ZHU C Z, ZHANG W S, DU B B, et al. Advances in the application of Da Vinci fluorescence imaging technology in colorectal surgery [J]. Chinese Journal of Robotic Surgery, 2020, 1(5): 332-337.杨熊飞a randomized controlled trial [J]. BMC Anesthesiology, 09, 9(): 3-8.
[13] Currie A C, Brigic A, Thomas-Gibson S, et al. A pilot study to assess near infrared laparoscopy with indocyanine green (ICG) for intraoperative sentinel lymph node mapping in early colon cancer[J]. Eur J Surg Oncol, 2017, 43(11): 2044-2051.
[14] Yeung T M, Wang L M, Colling R, et al. Intraoperative identification and analysis of lymph nodes at l a p a r o s c o p i c c o l o r e c t a l c a n c e r s u r g e r y u s i n g fluorescence imaging combined with rapid OSNA pathological assessment[J]. Surg Endosc, 2018, 32(2): 1073-1076.
[15] Buchs N C, Hagen M E, Pugin F, et al. Intra-operative fluorescent cholangiography using indocyanin green during robotic single site cholecystectomy[J]. Int J Med Robot, 2012, 8(4): 436-440.
[16] Tobis S, Knopf J, Silvers C, et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors[J]. J Urol, 2011, 186(1): 47-52.
[17] Bae S U, Baek S J, Hur H, et al. Intraoperative near infrared fluorescence imaging in robotic low anterior resection: three case reports[J]. Yonsei Med J, 2013, 54(4): 1066-1069.
[18] Jafari M D, Lee K H, Halabi W J, et al. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery[J]. Surg Endosc, 2013, 27(8): 3003-3008.
[19] Bae S U, Min B S, Kim N K. Robotic Low Ligation of the Inferior Mesenteric Artery for Rectal Cancer Using the Firefly Technique[J]. Yonsei Med J, 2015, 56(4): 1028-1035.
[20] Spinoglio G, Petz W, Borin S, et al. Robotic right colectomy with complete mesocolic excision and indocyanine green guidance[J]. Minerva Chir, 2019, 74(2): 165-169.
[21] Kobiela J, Bertani E, Petz W, et al. Double indocyanine green technique of robotic right colectomy: Introduction of a new technique[J]. J Minim Access Surg, 2019, 15(4): 357-359.
[22] Ong M L, Schofield J B. Assessment of lymph node involvement in colorectal cancer[J]. World J Gastrointest Surg, 2016, 8(3): 179-192.
[23] Kang J, Hur H, Min B S, et al. Prognostic impact of inferior mesenteric artery lymph node metastasis in colorectal cancer[J]. Ann Surg Oncol, 2011, 18(3): 704-710.
[24] Yanagita S, Uenosono Y, Arigami T, et al. Utility of the sentinel node concept for detection of lateral pelvic lymph node metastasis in lower rectal cancer[J]. BMC Cancer, 2017, 17(1): 433.
[25] Sciuto A, Merola G, De Palma G D, et al. Predictive factors for anastomotic leakage after laparoscopic colorectal surgery[J]. World J Gastroenterol, 2018, 24(21): 2247-2260.
[26] Ankersmit M, Bonjer H J, Hannink G, et al. Nearinfrared fluorescence imaging for sentinel lymph node identification in colon cancer: a prospective single-center study and systematic review with metaanalysis
[ J]. Tech Coloproctol, 2019, 23(12): 1113- 1126.
[27] Marano A, Priora F, Lenti L M, et al. Application of fluorescence in robotic general surgery: review of the literature and state of the art[J]. World J Surg, 2013, 37(12): 2800-2811.